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λ(A) : The eigenvalue of matrix A

σ(A) : The spectrum of matrix A

‖A‖ : The operator norm of matrix A

|||A||| : The unitarily invariant norm of matrix A

x ≺ y : x is majorized by y

A]tB : The t-geometric mean of two matrices A and B

A]B : The geometric mean of two matrices A and B

A∇B : The arithmetic mean of two matrices A and B

A!B : The harmonic mean of two matrices A and B
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A : B : The parallel sum of two matrices A and B

Mp(A,B, t) : The matrix p-power mean of matrices A and B

opgx(p, h,K) : The class of operator (p, h)-convex functions on K

A+, A− : The positive and the negative parts of matrix A
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Introduction

Nowadays, the importance of matrix theory has been well-acknowledged in many areas of

engineering, probability and statistics, quantum information, numerical analysis, and biological

and social sciences. In particular, positive definite matrices appear as data points in a diverse

variety of settings: co-variance matrices in statistics [20], elements of the search space in convex

and semi-definite programming [1] and density matrices in the quantum information [72].

In the past decades, matrix analysis becomes an independent discipline in mathematics due

to a great number of its applications [5, 7, 18, 24, 25, 26, 27, 34, 39, 46, 85]. Topics of matrix

analysis are discussed over algebras of matrices or algebras of linear operators in finite dimen-

sional Hilbert spaces. Algebra of all linear operators in a finite dimensional Hilbert space is

isomorphic to the algebra of all complex matrices of the same dimension. One of the main

tools in matrix analysis is the spectral theorem in finite dimensional cases. Numerous results

in matrix analysis can be transferred to linear operators on infinite dimensional Hilbert spaces

without any difficulties. At the same time, many important results from matrices are not true so

far for operators in infinite dimensional Hilbert spaces. Recently, many areas of matrix analysis

are intensively studied such as theory of matrix monotone and matrix convex functions, theory

of matrix means, majorization theory in quantum information theory, etc. Especially, physical

and mathematical communities pay more attention on topics of matrix inequalities and matrix

functions because of their useful applications in different fields of mathematics and physics as

well. Those objects are also important tools in studying operator theory and operator algebra

theory as well.

In 1930 von Neumann introduced a mathematical system of axioms of the quantum mechan-
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ics as follows:

(i) Each finite dimensional quantum system of n particles is associated with a Hilbert space

of dimension 2n;

(ii) Each observable in such a quantum system corresponds to a Hermitian matrix of the

same dimension;

(iii) Each quantum state is associated to a density matrix, i.e., a positive semi-definite matrix

of trace 1.

Therefore, matrix theory, matrix analysis and operator theory become the backgrounds of

quantum mechanics and hence, several problems in quantum mechanics could be translated to

others in the language of matrices. On the other hand, in the last decades along with an intensive

development of the quantum information theory, matrix analysis becomes more popular and

important.

Recall that if λ1, λ2, · · · , λk are eigenvalues of a Hermitian matrix A, then A can be repre-

sented as

A =
k∑
j=1

λjPj,

where Pj is the orthogonal projection onto the subspace spanned by the eigen-vectors corre-

sponding to the eigenvalue λj . And for a real-valued function f defined at λi (i = 1, · · · , k), the

matrix f(A) is well-defined by the spectral theorem [43] as

f(A) =
k∑
j=1

f(λj)Pj. (0.0.1)

In quantum theory most of important quantum quantities are defined with the canonical trace Tr

on the algebra of matrices. An important quantity is the quantum entropy. For a density matrix

A, the quantum entropy of A is the value

−Tr(A log(A)),

where the matrix log(A) is defined by (0.0.1).
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It is worth to mention that the function log t is matrix monotone on (0,∞), while the function

t log t is matrix convex on (0,∞). Recall that a function f is operator monotone on (0,∞) if

and only if tf(t) is operator convex on (0,∞). Operator monotone functions were first studied

by K. Loewner in his seminal papers [66] in 1930. In the same decade, F. Krauss introduced

operator convex functions [60]. Nowadays, the theory of such functions is intensively studied

and becomes an important topic in matrix theory because of their vast of applications in matrix

theory and quantum theory as well [41, 54, 55, 57, 63, 65, 69, 73, 75].

In general, a continuous function f defined on K ⊂ R is said to be [14]:

• matrix monotone of order n if for any Hermitian matrices A and B of order n with spectra

in K,

A ≤ B =⇒ f(A) ≤ f(B). (0.0.2)

• matrix convex of order n if for any Hermitian matrices A and B of order n with spectra in

K, and for any 0 ≤ λ ≤ 1,

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B). (0.0.3)

If the function f is matrix monotone (matrix convex, respectively) for any dimension of matrices,

then it is called operator monotone (operator convex, respectively).

An important example of operator monotone and convex functions is f(t) = ts. Loewner

showed that this function is operator monotone on R+ if and only if the power s ∈ [0, 1] while

it is operator convex on (0,∞) if and only if s ∈ [−1, 0] ∪ [1, 2].

Now let us look back at the scalar mean theory which sets a starting point for our study in

this thesis.

A scalar mean M of non-negative numbers is a function from R+ × R+ to R+ such that:

1) M(x, x) = x for every x ∈ R+;

2) M(x, y) = M(y, x) for every x, y ∈ R+;
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3) If x < y, then x < M(x, y) < y;

4) If x < x0 and y < y0, then M(x, y) < M(x0, y0);

5) M(x, y) is continuous;

6) M(tx, ty) = tM(x, y) for t, x, y ∈ R+.

A two-variable function M(x, y) satisfying condition 6) can be reduced to a one-variable

function f(x) := M(1, x). Namely, M(x, y) is recovered from f as M(x, y) = xf(x−1y).

Notice that the function f , corresponding to M is monotone increasing on R+. And this relation

forms a one-to-one correspondence between means and monotone increasing functions on R+.

In the last few decades, there has been a renewed interest in developing the theory of means

for elements in the subset H+
n of positive semi-definite matrices in the algebra Mn of all matrices

of order n. Motivated by a study of electrical network connections, Anderson and Duffin [3]

introduced a binary operator A : B, called parallel addition, for pairs of positive semi-definite

matrices. Subsequently, Anderson and Trapp [4] have extended this notion to positive linear

operators on a Hilbert space and demonstrated its importance in operator theory. Besides, the

problem to find a matrix analog of the geometric mean of non-negative numbers was a long-

standing problem since the product of two positive semi-definite matrices is not always a positive

semi-definite matrix. In 1975, Pusz and Woronowicz [79] solved this problem and showed that

the geometric meanA]B := A1/2(A−1/2BA−1/2)1/2A1/2 of two positive definite matricesA and

B is the unique solution of the matrix Riccati equation

XA−1X = B.

In 1980, Ando and Kubo [61] developed an axiomatic theory of operator means on H+
n . A

binary operation σ on the class of positive operators, (A,B) 7→ AσB, is called a connection if

the following requirements are fulfilled:

(i) Monotonicity: A ≤ C and B ≤ D imply AσB ≤ CσD;
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(ii) Transformation: C∗(AσB)C ≤ (C∗AC)σ(C∗BC);

(iii) Continuity: Am ↓ A and Bm ↓ B imply AmσBm ↓ AσB (Am ↓ A means that the

sequence Am converges strongly in norm to A).

A mean σ is a connection satisfying the normalized condition:

(iv) IσI = I (where I is the identity element of Mn).

The main result in Kubo-Ando theory is the proof of the existence of an affine order-isomorphism

from the class of operator means onto the class of positive operator monotone functions on R+

which is described by

AσfB = A1/2f(A−1/2BA−1/2)A1/2.

This formula verifies that the geometric mean defined by Pusz and Woronowicz was natural and

corresponding to the operator monotone function f(t) = t1/2. A mean σ is called symmetric if

AσB = BσA for any positive matrices A and B. Or, equivalently, the representing function f

of a symmetric mean satisfies f(t) = tf(t−1), t ∈ (0,∞).

Later, motivated by information geometry, Morozova and Chentsov [69] studied monotone

inner products under stochastic mappings on the space of matrices and monotone metrics in

quantum theory. In 1996, Petz [78] proved that there is a correspondence between monotone

metrics and operator means in the sense of Kubo and Ando, and hence, connected three impor-

tant theories in quantum information theory and matrix analysis.

It is worth to mention that along with the quantum entropy of quantum states, many other

important quantum quantities are defined with operator means, operator convex functions and

the canonical trace.

Example 0.0.1. For two density matrices A and B, the quantum relative entropy [64] of A with

respect to B is defined by

S(A||B) = −Tr(A(logA− logB)).
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The quantum Chernoff bound [10] in quantum hypothesis testing theory is given by a simple

expression: For positive semi-definite matrices A and B,

Q(A,B) = min
0≤s≤1

{Tr(AsB1−s)}.

One of important quantities in quantum theory is the Renyi divergence [20]: for α ∈ (0, 1)∪

(1,∞),

Dα(A||B) =
1

α− 1
log

Tr(AsB1−s)

Tr(A)
, D1 =

Tr(A(logA− logB))

Tr(A)
.

All of quantities listed above are special cases of the quantum f -divergence in quantum

theory where f is some operator convex function [45]. Thus, the theory of matrix functions is

an important part of matrix analysis and of quantum information theory as well.

Now let σ and τ be arbitrary operator means (not necessarily Kubo-Ando means) [61]. We

introduce a general approach to operator convexity as follows.

A non-negative continuous function f on R+ is called στ -convex if for any positive definite

matrices A and B,

f(AσB) ≤ f(A)τf(B). (0.0.4)

When σ and τ are the arithmetic mean, the function f satisfying the above inequality is operator

convex. When σ is the arithmetic mean and τ is the geometric mean, the function f satisfying

(0.0.4) is called operator log-convex. Such functions were fully characterized by Hiai and Ando

in [11] as decreasingly monotone operator functions.

The matrix power mean of positive semi-definite matrices A and B was first studied by

Bhagwat and Subramanian [15] as

Mp(A,B, t) = (tAp + (1− t)Bp)1/p , for p ∈ R.

The matrix power mean Mp(A,B, t) is a Kubo-Ando mean if and only if p = ±1. Never-

theless, the power means with p > 1 have many important applications in mathematical physics

and in the theory of operator spaces [21].
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In this thesis, we use (0.0.4) to define some new classes of operator convex functions with

the matrix power means Mp(A,B, t). We study properties of such functions and prove some

well-known inequalities for them. We also provide several equivalent conditions for a function

to be operator convex in this new sense.

Now, let us consider some geometrical interpretations for scalar means and matrix means.

Let 0 ≤ a ≤ x ≤ b. It is obvious that the arithmetic mean (a+ b)/2 is the unique solution of the

optimization problem

(x− a)2 + (x− b)2 → min, x ∈ R.

And for any scalar mean M on R+,

M(a, b)− a ≤ b− a.

We call this the in-betweenness property.

In 2013, Audenaert studied the in-betweenness property for matrix means in [9]. Recently,

Dinh, Dumitru and Franco [49] continued to investigate this property for the matrix power

means. They provided some partial solutions to Audenaert’s conjecture in [9] and a counterex-

ample to the conjecture for p > 0.

From the property 3) in the definition of scalar means, it is obvious that,

a+ b

2
−M(a, b) ≤ b− a

2
. (0.0.5)

In other words, M(a, b) lies inside the sphere centered at the arithmetic mean
a+ b

2
with the

radius equal to a half of the distance between a and b. We call this the in-sphere property of

scalar means with respect to the Euclidean distance on R. Notice that for s ∈ [0, 1] and p > 0

the s-weighted geometric mean M(a, b) = a1−sbs and the power mean (or binomial mean)

Mp(a, b, s) = ((1− s)ap + sbp)1/p satisfy the in-sphere property (0.0.5).
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Now, let A and B be positive definite matrices. The Riemannian distance function on the set

of positive definite matrices is defined by

δR(A,B) =

(∑
i

log2(λi(A
−1B))

)1/2

.

In 2005, Moakher [67] showed that the geometric mean A]B is the unique minimizer of the

sum of the squares of the distances:

δ2R(X,A) + δ2R(X,B)→ min, X ≥ 0.

Almost at the same time, Bhatia and Holbrook [17] showed that the curve

γ(s) = A]sB := A1/2(A−1/2BA−1/2)sA1/2 (s ∈ [0, 1])

is the unique geodesic (i.e., the shortest) path joiningA andB. Furthermore, the geometric mean

A]B is the midpoint of this geodesic. Therefore, the picture for matrix means is very different

from the one for scalar ones.

Notice that one of the important matrix generalizations of the in-sphere property is the fa-

mous Powers-Størmer inequality proved by Audenaert et. al. [10], and then expanded to op-

erator algebras by Ogata [74]: for any positive semi-definite matrices and for any s ∈ [0, 1],

Tr(A+B − |A−B|) ≤ 2 Tr(AsB1−s). (0.0.6)

Using the last inequality the authors solved a problem in quantum hypothesis testing theory: to

define the quantum generalization of the Chernoff bound [23]. The quantity on the left hand

side of (0.0.6) is called the non-logarithmic quantum Chernoff bound. Along with the men-

tioned above importance of matrix means, the Powers-Størmer inequality again shows us that

the picture of matrix means is really interesting and complicated.

The second aim of this thesis is to investigate various matrix versions of in-sphere property
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(0.0.5). More precisely, we study inequalities involving matrices, matrix means, trace, norms

and matrix functions. We also consider the in-sphere property for matrix means with respect to

some distance functions on the manifold of positive semi-definite matrices.

The purposes of the current thesis are as follows.

1. Investigate new types of operator convex functions with respect to matrix means, study

their properties and prove some well-known inequalities for them.

2. Characterize new types of operator convex functions by matrix inequalities.

3. Study reverse arithmetic-geometric means inequalities involving general matrix means.

4. Study reverse inequalities for the matrix Heinz means and unitarily invariant norms.

5. Study in-sphere properties for matrix means with respect to unitarily invariant norms.

Methodology. The main tool in our research is the spectral theorem for Hermitian matrices.

We use techniques in the theory of matrix means of Kubo and Ando to define new types of

operator convexity. Some basic techniques in the theory of operator monotone functions and

operator convex functions are also used in the dissertation. We also use basic knowledge in

matrix theory involving unitarily invariant norms, trace, etc.

Main results of the work were presented on the seminars at the Department of Mathematics

at Quy Nhon University and on international workshops and conferences as follows:

1. The Second Mathematical Conference of Central and Highland of Vietnam, Da Lat Uni-

versity, November 2017.

2. The 6th International Conference on Matrix Analysis and Applications (ICMAA 2017),

Duy Tan University, June 2017.

3. Conference on Algebra, Geometry and Topology (DAHITO), Dak Lak Pedagogical Col-

lege, November 2016.

4. International Workshop on Quantum Information Theory and Related Topics, VIASM,

September 2015.

5. Conference on Mathematics of Central-Highland Area of Vietnam, Quy Nhon University,

August 2015.
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6. Conference on Algebra, Geometry and Topology (DAHITO), Ha Long, December 2014.

7. International Workshop on Quantum Information Theory and Related Topics, Ritsumeikan

University, Japan, September 2014.

This thesis has Introduction, three chapters, Conclusion, a list of the author’s papers related

to the thesis and preprints related to the topics of the thesis, and a list of references.

Brief content of the thesis.

In Introduction the author provides a background on the topics which are considered in this

work. The meaningfulness and motivations of this work are explained. The author also provides

a brief content of the thesis with main results from the last two chapters.

In the first chapter the author collects some basic preliminaries which are used in the thesis.

In the second chapter the author defines and studies new classes of operator convex func-

tions, their properties, proves some well-known inequalities for them and obtains a series of

characterizations.

Let Mn be the space of n× n complex matrices, Hn the set of all n× n Hermitian matrices

and H+
n the set of positive semi-definite matrices in Mn. In this work, we always assume that

p is some positive number, J is an interval in R+ such that (0, 1) ⊂ J . The set K (⊂ R+) is

always a p-convex set (i.e., [αxp + (1− α)yp]1/p ∈ K for all x, y ∈ K and α ∈ [0, 1]), and h is

an super-multiplicative function on J (i.e., h(xy) ≥ h(x)h(y) for any x and y in J).

Definition 2.1.2 ([51]). Let h : J → R+ be a super-multiplicative function. A non-negative

function f : K → R is said to be operator (p, h)-convex (or belongs to the class opgx(p, h,K))

if for any n ∈ N and for any A,B ∈ H+
n with spectra in K, and for α ∈ (0, 1), we have

f
(

[αAp + (1− α)Bp]1/p
)
≤ h(α)f(A) + h(1− α)f(B). (2.1.4)

When p = 1, h(α) = α, we get the usual definition of operator convex functions on R+.

The class of operator (p, h)-convex functions contains several well-known classes of func-

tions such as non-negative convex functions, h- and p-convex functions [13], Godunova-Levin

functions (or Q-class functions) [30] and P -class functions [70]. An operator (p, h)-convex
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function could be either an operator monotone function or an operator convex function. On

the other hand, many power functions are operator (p, h)-convex but are neither an operator

monotone nor an operator convex.

Operator (p, h)-convex functions satisfy some properties. Besides, we also obtain matrix

versions of Jensen type inequality, Hansen-Pedersen type inequality for operator (p, h)-convex

functions. And finally, we provide a series of equivalent conditions for a continuous function to

be operator (p, h)-convex.

Theorem 2.1.6 ([51]). Let f be a non-negative function on the interval K such that f(0) = 0,

and h a non-negative and non-zero super-multiplicative function on J satisfying 2h(1/2) ≤

α−1h(α) (α ∈ (0, 1)). Then the following statements are equivalent:

(i) f is an operator (p, h)-convex function;

(ii) for any contraction V (‖V ‖ ≤ 1) and self-adjoint matrix A with spectrum in K,

f((V ∗ApV )1/p) ≤ 2h(1/2)V ∗f(A)V ;

(iii) for any orthogonal projection Q and any Hermitian matrix A with spectrum in K,

f((QApQ)1/p) ≤ 2h(1/2)Qf(A)Q;

(iv) for any natural number k, for any families of positive operators {Ai}ki=1 in a finite dimen-

sional Hilbert space H satisfying
∑k

i=1 αiAi = IH (the identity operator in H) and for

arbitrary numbers xi ∈ K,

f

[ k∑
i=1

αix
p
iAi

]1/p ≤ k∑
i=1

h(αi)f(xi)Ai. (2.1.15)

In the second section of this chapter we define another type of convexity which is called

operator (r, s)-convexity.
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For a pair X = (A1, A2) of Hermitian matrices with σ(A1), σ(A2) ⊂ K, and a function

f , we define f(X) = (f(A1), f(A2)). For a pair of positive numbers W = (ω1, ω2), we set

W2 := ω1 + ω2 and define the weighted matrix r-power mean M [r](X,W ) to be

M [r](X,W ) :=

[
1

W
(ω1A

r
1 + ω2A

r
2)

]1/r
.

Definition 2.2.1 ([48]). Let r, s be arbitrary numbers, and K be an interval in R+. A continuous

function f : K → (0,∞) is said to be operator (r, s)-convex if

f(M [r](X,W )) ≤M [s](f(X),W ). (2.2.16)

where X,W, f(X),M [r](X,W ) are defined as above.

We obtain some properties of operator (r, s)-convex functions which are similar to those of

operator (p, h)-convex functions. We also prove the Rado inequality for such functions.

In the third chapter, we study the in-sphere property for matrix means. We also establish

some reverse inequalities for the matrix Heinz means and provide a new characterization of the

matrix arithmetic mean.

Firstly, notice that for two non-negative numbers a and b and for any number s ∈ [0, 1], it is

obvious that

min{a, b} =
a+ b

2
− |a− b|

2
≤ a1−sbs = a]sb. (3.0.2)

and the following inequality for the Heinz mean Hs(a, b) =
asb1−s + a1−sbs

2
is an immediate

consequence of (3.0.2)

a+ b

2
− |a− b|

2
≤ a1−sbs + asb1−s

2
. (3.0.3)
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And the arithmetic-geometric means (AGM) inequality has a refinement given by

√
ab ≤ a1−sbs + asb1−s

2
≤ a+ b

2
(3.0.4)

Various matrix generalizations of inequality (3.0.2) and (3.0.3) are a timely research subject

under active investigation.

In the first section of the third chapter, for some symmetric operator mean σ (i.e., AσB =

BσA for any positive definite matrices A,B) we investigate a matrix version of (3.0.2) and

(3.0.3) of the form:

A+B

2
− 1

2
|A−B| ≤ AσfB. (3.1.6)

We show that generalized reverse AGM inequalities hold under the extra condition thatAB+BA

is positive semi-definite.

Theorem 3.1.1 ([50]). Let f be a strictly positive operator monotone function on [0,∞) with

f((0,∞)) ⊂ (0,∞) and f(1) = 1. Then for any positive semi-definite matrices A and B with

AB +BA ≥ 0,

A+B

2
− 1

2
|A−B| ≤ AσfB. (3.1.7)

By using Matlab, we provide counter-examples which confirm that the condition AB +

BA ≥ 0 is essential.

In the second section we study some reverse inequalities to (3.0.4) for unitarily invariant

norms and the matrix Heinz mean. Recall that a norm ||| · ||| on Mn is unitarily invariant if

|||UAV ||| = |||A||| for any unitary matrices U, V and any A ∈Mn.

Theorem 3.2.1 ([52]). Let ||| · ||| be an arbitrary unitarily invariant norm on Mn. Let f be an

operator monotone function on [0,∞) with f((0,∞)) ⊂ (0,∞) and f(0) = 0, and g a function
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on [0,∞) such that g(t) = t
f(t)

(t ∈ (0,∞)) and g(0) = 0. Then for any A,B ∈ Pn,

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|In − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2
∣∣∣∣∣∣∣∣∣

≤ |||f(A)g(B)|||.

As an application, for f(t) = ts (s ∈ [0, 1]), we obtain a reverse inequality for the matrix

Heinz mean as in Theorem 3.2.2 and some inequalities for unitarily invariant norms.

In the rest of the thesis we consider the in-sphere property for operator means. Firstly, recall

that from (3.1.7), for any operator mean σ, for any unitarily invariant norm ||| · ||| and for any

A,B ∈ H+
n with AB +BA ≥ 0, we have

∣∣∣∣∣∣∣∣∣A+B

2
− AσB

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A−B|||.

The last inequality means that whatever operator mean σ we take, the pointAσB can not run out

of the sphere with center at
A+B

2
and the radius equal to

1

2
|||A − B|||. This is one of matrix

versions of in-sphere property of operator means. However, if we fix some operator mean σ

which is different from the arithmetic mean, then we can find a couple of matrices A,B so that

AσB runs away from the sphere mentioned aboved. In the next theorem, we provide a new

characterization of the matrix arithmetic mean by the inequality (3.1.7).

Theorem 3.3.1 ([52]). Let σ be an arbitrary symmetric mean. If for an arbitrary unitarily

invariant norm ||| · ||| on Mn,

∣∣∣∣∣∣∣∣∣A+B

2
− AσB

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A−B||| (3.3.24)

whenever A,B ∈ Pn, then σ is the arithmetic mean.

Finally, we show that if we replace the Kubo-Ando means by the power mean Mp(A,B, t)

= (tAp + (1 − t)Bp)1/p with p ∈ [1, 2] then the inequality in Theorem 3.3.1 holds without the

condition AB + BA ≥ 0. In other words, the matrix power means Mp(A,B, t) satisfies the

in-sphere property with respect to the Hilbert-Schmidt 2-norm.
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Theorem 3.3.2 ([52]). Let p ∈ [1, 2] and Mp(A,B, t) = (tAp + (1 − t)Bp)1/p . Then for any

pair of positive semi-definite matrices A and B, we have∥∥∥∥A+B

2
−Mp(A,B, t)

∥∥∥∥
2

≤ 1

2
‖A−B‖2 . (3.3.28)
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Chapter 1

Preliminaries

Let N be the set of all natural numbers. For each n ∈ N, we denote by Mn the algebra of all

n× n complex matrices. Denote by I and O the identity and zero elements of Mn, respectively.

In this thesis we consider problems for matrices, i.e., operators in finite dimensional Hilbert

spaces. We will mention if the case is infinite dimensional.

Recall that for two vectors x = (xj), y = (yj) ∈ Cn the inner product 〈x, y〉 of x and y is

defined as 〈x, y〉 ≡
∑

j xjyj . Now let A be a matrix in Mn. The conjugate transpose or the

adjoint A∗ of A is the complex conjugate of the transpose AT . We have, 〈Ax, y〉 = 〈x,A∗y〉.

A matrix A is called:

– self-adjoint or Hermitian if A = A∗, or, it is equivalent to that 〈Ax, y〉 = 〈x,Ay〉;

– unitary if AA∗ = A∗A = I;

– normal if AA∗ = A∗A;

– positive semi-definite (or positive) (we write A ≥ 0) if

〈x,Ax〉 ≥ 0 for all x ∈ Cn; (1.0.1)

– positive definite (or strictly positive) (we write A > 0) if (1.0.1) is strict for all non-zero

vector x ∈ Cn;
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– orthogonal projection if A = A∗ = A2.

Note that in the finite dimensional case, A > 0 if and only if A is invertible and A ≥ 0.

A positive semi-definite matrix is necessary Hermitian. Further, we denote by Hn the set of all

n × n Hermitian matrices, by H+
n and Pn the n × n positive semi-definite and positive definite

matrices, respectively.

Lemma 1.0.1. The following statements are equivalent:

(i) A is positive semi-definite;

(ii) A is Hermitian and all its eigenvalues are non-negative;

(ii) A = B∗B for some matrix B;

(iii) A = T ∗T for some upper triangular T ;

(iv) A = T ∗T for some upper triangular T . Moreover, T can be chosen to have non-negative

diagonal entries. If A is positive definite, then T is unique1;

(v) A = B2 for some positive semi-definite matrix B. Such a B is unique, denoted by B =

A1/2 and called the (positive) square root of A.

The matrix A is positive definite if and only if B is positive definite.

Notice that for any matrix A, the matrix A∗A is always positive semi-definite. Hence, as a

consequence of (v), the module |A| of A is well defined to be |A| := (A∗A)1/2.

Now let us define a partial order on the set Hn of Hermitian matrices as follows:

A ≥ B if A−B ≥ 0.

This is known as the Loewner partial order.

The canonical trace of a matrix A = (aij) ∈ Mn, denoted by Tr(A), is the sum of all

diagonal entries, or, we often use the sum of all eigenvalues λi(A) of A, i.e.,

Tr(A) =
n∑
i=1

aii =
n∑
i=1

λi(A).

1This is called the Cholesky Decomposition of A
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A positive semi-definite matrix A with trace 1 is called a density matrix which is associated

with a quantum state in some quantum system. In this sense, all rank one orthogonal projections

in Mn are called pure states. And positive semi-definite matrices are called mixed states.

For a matrix/operator A, the operator norm of A is defined as

‖A‖ = sup{‖Ax‖ : x ∈ H, ‖x‖ ≤ 1}

where ‖x‖ = 〈x, x〉1/2.

An operator A is called a contraction if ‖A‖ ≤ 1.

One of the most important information about operators/matrices are their spectra. Generally,

the spectrum σ(A) of a linear operator A acting in some Hilbert space consists of all numbers

λ ∈ C such that A− λI is not invertible. Therefore, in the finite dimensional case the spectrum

σ(A) of a matrix A is the set of eigenvalues of A, i.e., all numbers λ such that Ax = λx.

Eigenvalues si(A) of the module |A| are called the singular values (also called s-numbers) of

A. For a matrix A ∈ Mn, the notation s(A) ≡ (s1(A), s2(A), ..., sn(A)) means that s1(A) ≥

s2(A) ≥ ... ≥ sn(A).

Now let us recall some important norms which will be considered in this thesis.

The Ky Fan k-norm is the sum of all singular values, i.e.,

||A||k =
k∑
i=1

si(A).

The Schatten p-norm is defined as

||A||p =

(
n∑
i=1

spi (A)

)1/p

.

When p = 2, we have the Frobenius norm or sometimes called the Hilbert-Schmidt norm :

‖A‖2 = (Tr |A|2)1/2 =

(
n∑
j=1

s2j(A)

)1/2

.
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Let x = (x1, ..., xn) be an element of Rn. Let x = (x[1], ..., x[n]) be the vector obtained by

rearranging the coordinates of x in the decreasing order (x[1] ≥ x[2] ≥ ... ≥ x[n]).

Let x, y ∈ Rn. If

Σk
i=1x[i] ≤ Σk

i=1y[i], k = 1, 2, ..., n,

then we say x is weakly majorized by y and denote x ≺w y.

If in addition to x ≺w y,Σk
i=1x[i] = Σk

i=1y[i] holds, then we say that x is majorized by y and

denote x ≺ y.

Example 1.0.1. If each ai ≥ 0,Σn
i=1ai = 1 then

(
1

n
, ...,

1

n

)
≺ (a1, ..., an) ≺ (1, 0, ..., 0).

We call a matrix non-negative if all its entries are non-negative real numbers. A non-negative

matrix is called doubly stochastic if all its row and column sums are one.

Definition 1.0.1. A norm ||| · ||| on Mn is called unitarily invariant if

|||UAV ||| = |||A|||

for any matrix A ∈Mn and for any unitary matrices U, V ∈Mn.

It is well-known that every unitarily invariant norm is sub-multiplicative [16, p. 94]:

|||AB||| ≤ |||A||| · |||B||| for all A,B.

If the product AB is normal, then for every unitarily invariant norm, we have [16, p. 253]

|||AB||| ≤ |||BA|||.

Now let us recall the spectral theorem which is one of the most important tools in functional

analysis and matrix theory. In mathematics, particularly in linear algebra and functional analysis,
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the spectral theorem is a result about the diagonalizability of linear operators.

Theorem 1.0.1 (Spectral Decomposition). Let λ1 > λ2... > λk be eigenvalues of a Hermitian

matrix A. Then

A =
k∑
j=1

λjPj, (1.0.2)

where Pj is the orthogonal projection onto the subspace spanned by the eigenvectors associated

to the eigenvalue λj .

The formula (1.0.2) is called the spectral decomposition of A.

For a real-valued function f defined on some intervalK and for a self-adjoint matrixA ∈Mn

with spectrum in K, the matrix f(A) is defined by means of the functional calculus, i.e.,

A =
k∑
j=1

λjPj =⇒ f(A) :=
k∑
j=1

f(λj)Pj. (1.0.3)

In another words, if A = Udiag(λ1, ..., λn)U∗ is a spectral decomposition of A (where U is

some unitary), then

f(A) := Udiag(f(λ1), · · · , f(λn))U∗. (1.0.4)

Let A be a Hermitian matrix with the spectral decomposition A =
∑k

i=1 λiPi. Then its

positive part A+ and negative part A− are defined as follows:

A+ =
∑

λiPi with λi > 0,

and

A− = −
∑

λjPj with λj < 0.

It implies

A = A+ − A−

. Now we are at the stage to discuss about matrix/operator functions. Operator monotone func-

tions were first studied by Loewner in his seminal papers [66] in 1930. In the same decade,
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Krauss introduced operator convex functions [60]. Nowadays, the theory of such functions is

intensively studied and becomes an important topic in matrix theory because of their vast of

applications in matrix theory and quantum theory as well.

Definition 1.0.2. A continuous function f defined on an intervalK (K ⊂ R) is said to be matrix

monotone of order n on K if for any Hermitian matrices A and B in Mn with spectra in K,

A ≤ B implies f(A) ≤ f(B).

If f is matrix monotone of any orders then f is called operator monotone.

Definition 1.0.3. A continuous function f defined on an intervalK (K ⊂ R) is said to be matrix

convex of order n on K if for any Hermitian matrices A and B in Mn with spectra in K and for

all real numbers 0 ≤ λ ≤ 1,

f
(
λA+ (1− λ)B

)
≤ λf(A) + (1− λ)f(B). (1.0.5)

If f is matrix convex of any orders then f is called operator convex. It is worth to mention

that if the eigenvalues of A and B are all in an interval K, then the eigenvalues of any convex

combination of A,B are also in K.

One of the very important examples of operator monotone functions and operator convex

functions is the function f(t) = tr. Loewner [66] showed that this function is operator monotone

on R+ if and only if the power r ∈ [0, 1], i.e.,

0 ≤ A ≤ B =⇒ Ar ≤ Br.

The last inequality is well-known as Loewner-Heinz inequality. When r ∈ [−1, 0] ∪ [1, 2] the

power function is operator convex, i.e., for any positive semi-definite matrices A, B and for any

λ ∈ [0, 1],

(λA+ (1− λ)B)r ≤ λAr + (1− λ)Br.
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Another important example is the function f(t) = log t, which is operator monotone on

(0,∞) and the function g(t) = t log t is operator convex. These two functions appear in the

definition of quantum entropy of states in quantum information theory. For a density matrix A,

the quantum entropy of A is defined as

−Tr(A logA).

In the formulation of the spectral theorem the function f only needs to be defined at eigenval-

ues of the matrix A and not necessary to be continuous. But in this thesis, we will consider only

continuous functions. In this case, the operator convexity (1.0.5) of the function f is equivalent

to

f

(
A+B

2

)
≤ f(A) + f(B)

2
. (1.0.6)

Functions satisfying (1.0.6) are called mid-point operator convex.

It is clear that the set of operator monotone functions and the set of operator convex functions

are both closed under positive linear combinations and also under pointwise limits. In other

words, if f, g are operator monotone, and if α, β are positive real numbers, then αf + βg is

also operator monotone. If {fm} are operator monotone, and if fm(x) → f(x), then f is also

operator monotone. The same is true for operator convex functions.

Matrix monotone/convex functions are monotone/convex in the usual sense. The opposite is

not true. For example, the function t2 is not operator monotone on R+. Indeed, let A,B ∈ H+
n ,

(A+B)2 = A2 + (AB +BA) +B2.

For any choice of A and B such that AB + BA has even one strictly negative eigenvalue, the

inequality (A + tB)2 ≥ A2 will fail for all sufficiently small t. It is easy to find such A and B

in H+
n . For example, take

A =

1 1

1 1

 B =

1 0

0 0
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so that

AB +BA =

2 1

1 0

 .
The monotonicity and the concavity of functions in real analysis are different. However,

they are the same for operator case considered on the positive half-line [0,∞). A continuous

function f is operator monotone on [0,∞) if and only if it is operator concave.

It is well-known that a continuous function f on the interval (0, α) is operator convex if

and only if the function g(t) = f(t)/t is operator monotone on (0, α). In finite dimensional

case we have the following tight relation between matrix monotone functions and matrix convex

functions on R+.

Theorem 1.0.2 ([53]). Let f be a strictly positive, continuous function on [0,∞). If f is mono-

tone of order 2n, the function g(t) = t
f(t)

is monotone of order n on [0,∞).

As a consequence, it follows from the above theorem that a such relation is still valid for

operator monotone functions and operator convex functions on R+.

The theory of operator monotone functions has been paid more attention after a series of

important papers on operator means and their applications. Motivated by a study of electrical

network connections, Anderson and Duffin [3] introduced a binary operator A : B, called the

parallel addition for pairs of positive matrices as

A : B = (A−1 +B−1)−1.

The harmonic mean is 2(A : B) which is the dual of the arithmetic mean. In the same year, Pusz

and Woronowicz [79] considered a binary operation

A]B := A1/2(A−1/2BA−1/2)1/2A1/2,

called the geometric mean of two positive definite matrices A and B. They showed that the
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geometric mean is the unique solution of the Riccati matrix equation

XA−1X = B,

and hence, solved a problem how to define the geometric mean of two positive semi-definite

matrices.

In 1980, Ando and Kubo [61] developed an axiomatic theory of operator mean . A binary

operation σ on the class of positive operators, (A,B) 7→ AσB, is called a connection if the

following requirements are fulfilled:

(i) A ≤ C and B ≤ D imply AσB ≤ CσD.

(ii) C∗(AσB)C ≤ (C∗AC)σ(C∗BC).

(iii) Am ↓ A and Bm ↓ B imply AmσBm ↓ AσB (where Am ↓ A means that the sequence Am

converges strongly in norm to A).

A mean is a connection σ satisfying the normalized condition:

(iv) IσI = I .

An immediate consequence of (ii) is

(ii)0 C(AσB)C = (CAC)σ(CBC) for any invertible operator C.

In particular, every connection is positively homogeneous, i.e.,

a(AσB) = (aA)σ(aB) for a > 0.

The key result in the theory of Kubo and Ando is that operator means are in a 1-to-1 correspon-

dence with operator monotone functions on [0,∞) and that correspondence is given by

AσfB = A1/2f(A−1/2BA−1/2)A1/2, A,B ∈ H+
n . (1.0.7)

The function f is called representing function of σ.
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Note that in (1.0.7) the matrix A should be invertible. But we can still define operator means

for positive semi-definite matrices as follows: For A,B ≥ 0 and for an operator mean σ, we can

define (A + εI)σ(B + εI) with ε > 0. Then, by the continuity of the representing function of

σ, letting ε tend to zero from the right we get AσB. Further, without any special mention we

always consider operator means for positive semi-definite matrices.

Notice that the Kubo-Ando theory was built based on the integral representation of operator

monotone functions. For matrix monotone functions there is no such representations. Therefore,

if we restrict our consideration on means with respect to the matrix algebra of a fixed order, some

questions become extremely difficult. Since in this thesis we do not consider questions on the

structure of classes of matrix means with respect to the dimension of matrix algebras, we always

assume that all means are operator means, i.e., with respect to infinite dimensional spaces. But

depending on contexts, we sometimes use the terminology ”matrix means” instead of ”operator

means”.

In the rest of this chapter, we recall some important operator means which are considered in

this thesis. For A,B ∈ H+
n and t ∈ [0, 1] the t-geometric mean A]tB is defined by

A]tB = A1/2(A−1/2BA−1/2)tA1/2.

It is also well-known that on the Riemannian manifold H+
n the t-geometric means (for 0 ≤

t ≤ 1) together form the unique geodesic curve joining A and B in H+
n . It is clear that the

t-geometric mean is associated with the monotone function f(x) = xt for t ∈ [0, 1].

A mean σ is called symmetric or self-adjoint if AσB = BσA for any A and B. In this case,

the representing function f of σ satisfies the identity f(t) = tf(t−1) (t ∈ (0,∞)). In 1979, Ando

[6] highlighted that any symmetric mean σ lies between the arithmetic mean A∇B =
A+B

2
and the harmonic mean A!B := (A−1∇B−1)−1, i.e.,

! ≤ σ ≤ ∇.
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Chapter 2

New types of operator convex functions

and related inequalities

Being the most fundamental concept in convex analysis and optimization theory, the con-

vexity of functions has been extensively studied in various contexts of pure and applied mathe-

matics.

In 1906, Jensen proved that if the function f is convex on some interval J ⊂ R, then for any

m points x1, x2, ..., xm in J , we have

f(x1) + f(x2) + ...+ f(xm)

m
≥ f

(
x1 + x2 + ...+ xm

m

)
.

Jensen inequality is quite often used in proving many important inequalities and in deter-

mining the convexity of a function. In 1978, Breckner [19] introduced s-convex functions as a

generalization of convex functions. After that, in 1985, Godunova and Levin [36] introduced a

Godunova-Levin function or Q-class function and studied properties of this new type of func-

tions as well as their applications in convex functions. Follow up this research tendency of

functions, ten years later, in 1995, Dragomir et. al [28] gave a definition of P -function and

some results on this class of function are shown by Pearce-CEM-Rubinov [76] and Tseng-Yang-

Dragomir [82]. In 2007, Zhang and Wan [87] introduced p-convex functions. At the same year,
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the concept of h-convexity with a super-multiplicative function h was defined by Varos̆anec

[84]. For more information about applications of different types of convexity the author refers

the readers to [2, 37, 38, 68, 82, 88].

Let us summary all mentioned above types of convexity in the following definition.

Definition 2.0.1. Let J be an interval in R+ such that [0, 1] ⊂ J ; p and s some positive real

numbers, and K (⊂ R+) a p-convex set (i.e., [λxp + (1− λ)yp]1/p ∈ K for all x, y ∈ K and

λ ∈ [0, 1]). A function h defined on J is called super-multiplicative if h(xy) ≥ h(x)h(y) for

any x and y in J . A function f : K → R+ is said to be:

– convex, if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

– s-convex, if f(λx+ (1− λ)y) ≤ [λf(x)s + (1− λ)f(y)s]1/s;

– Godunova-Levin, if f(λx+ (1− λ)y) ≤ λ−1f(x) + (1− λ)−1f(y);

– P -convex (or the class P (K)), if f(λx+ (1− λ)y) ≤ f(x) + f(y);

– p-convex (or the class PC(K)), if f
(

[λxp + (1− λ)yp]1/p
)
≤ λf(x) + (1− λ)f(y);

– h-convex, if f (λx+ (1− λ)y) ≤ h(λ)f(x) + h(1− λ)f(y),

for any x, y ∈ K and λ ∈ (0, 1). If the inequalities are reversed, then we have the corresponding

types of concave functions.

We observe that in the above definitions of convexity each type depends on the means used in

the corresponding inequality. Therefore, if by changing scalar means we will obtain new classes

of convex functions. Now we define a more general type of convexity which is associated with

scalar means as follows.

Definition 2.0.2. LetM andN be two scalar means on R+. A non-negative, continuous function

f is called MN -convex on K if for any x, y ∈ K,

f(M(x, y)) ≤ N(f(x), f(y)). (2.0.1)
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This definition covers all types of convexity listed above.

One of the most useful means is the binormal mean, or the power mean

f(p) =

(
ap + bp

2

)1/p

which is an increasing function of p on (−∞,∞). And it is well-known that for two positive

numbers a, b,
√
ab = exp

(
1

2
(log a+ log b)

)
= lim

p 7→0

(
ap + bp

2

)1/p

.

In [15] Bhagwat and Subramanian firstly studied the matrix version of f(p). They showed

that for positive semi-definite matrices A,B,

lim
p→0+

(
Ap +Bp

2

)1/p

= exp

(
logA+ logB

2

)
.

The mean exp
(
1
2
(logA+ logB)

)
is called the log Euclidian mean which is quite different from

the geometric mean A]B = A1/2(A−1/2BA−1/2)1/2A1/2. The matrix power mean is a Kubo-

Ando mean if and only if p = ±1.

Bhagwat and Subramanian also showed that the matrix function f(p) is monotone with re-

spect to p, on the intervals (−∞,−1] and [1,∞) but not on (−1, 1). Recently, Audenaert and

Hiai [12] obtained a more general result on the monotonicity of f(p) which will be used in this

chapter.

Theorem 2.0.1 ([12]). Let p, q ∈ R. Then the matrix inequality

(
Ap +Bp

2

)1/p

≤
(
Aq +Bq

2

)1/q

holds for any positive semi-definite matrices A,B if and only if p, q satisfy one of the following
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conditions: 

p = q,

1 ≤ p < q,

q < p ≤ −1,

p ≤ −1, q ≥ 1,

1/2 ≤ p < 1 ≤ q,

p ≤ −1 < q ≤ −1/2.

Now let us consider the general approach of operator convexity. Here we present what is

arguably the simplest approach to these inequalities. This is accomplished by using matrix

analogues of two elementary ideas from classical convexity theory: the Jensen inequality, and

the construction of the perspective of a convex function.

Definition 2.0.3. Let X = (A1, A2) with σ(A1), σ(A2) ⊂ K. Let M,N be arbitrary operator

means (Kubo-Ando or non-Kubo-Ando means). A continuous function f is called operator

MN -convex on K if

f (M(A1, A2)) ≤ N (f(A1), f(A2)) . (2.0.2)

In the case

M(A1, A2) = N(A1, A2) =
A1 + A2

2

if the function f satisfies inequality (2.0.2) then f is operator convex.

It is worth to remind that operator monotone functions and operator convex functions are

much popular and important because of their applications in matrix analysis, matrix theory, oper-

ator theory, and especially, in quantum information theory. People characterized those functions

by using several tools including matrix inequalities. One of the most famous characterizations

of operator convexity due to Hansen and Pedersen [42] by Jensen’s inequality.
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Theorem 2.0.2 ([42]). If f is a continuous, real-valued function on the half-open interval K =

[0, α) (α ≤ ∞), then the following conditions are equivalent:

(i) f is operator convex and f(0) ≤ 0;

(ii) f(A∗XA) ≤ A∗f(X)A for every contraction A and every Hermitian operator X with

spectrum in K;

(iii) f(A∗XA + B∗Y B) ≤ A∗f(X)A + B∗f(Y )B for all operators A,B such that A∗A +

B∗B ≤ I and for all Hermitian X, Y with spectra in K;

(iv) f(PXP ) ≤ Pf(X)P for any orthogonal projection P and any self-adjoint X with spec-

trum in K.

The inequality in (ii) is known as Davis-Choi inequality. The inequality in (iii) is well-known

with the name Hansen-Pedersen inequality.

The main aim of this chapter is to define new classes of operator convex functions based on

Kubo-Ando theory of operator means even for any number of matrices [77]. More precisely,

we use the family of the matrix power means to define new classes of so called operator (r, s)-

convex functions and operator (p, h)-convex functions. Studying their properties, we prove some

well-known inequalities for them. We also provide similar to the Hansen-Pedersen characteri-

zations for operator (p, h)-convex and operator (r, s)-convex functions.

Main results in this chapter are from the works [51] and [48].

2.1 Operator (p, h)-convex functions

The results of this section were announced in [51].

In this section, recall that let p be some positive number, J some interval in R+ containing the

interval [0, 1] (or J ≡ [0, 1]), andK (⊂ R+) a p-convex subset of R+ (i.e., [αxp + (1− α)yp]1/p ∈

K for all x, y ∈ K and α ∈ [0, 1]).

In [29] a more general class of non-negative functions, so-called (p, h)-convex functions is

considered.
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Definition 2.1.1. ([29]) Let h : J → R+ be a non-zero super-multiplicative function. A non-

negative function f : K → R is said to be (p, h)-convex if

f
(

[αxp + (1− α)yp]1/p
)
≤ h(α)f(x) + h(1− α)f(y) (2.1.3)

for all x, y ∈ K and α ∈ [0, 1].

This class contains several well-known classes of functions such as non-negative convex

functions, h-convex [84], r-convex functions [22, 35], Godunova-Levin functions (or Q-class

functions) [36], P -class functions [28]. Recently, M. S. Moslehian and others [13, 30, 58, 70]

introduced operator P -class functions and operator Q-class functions. They studied properties

and proved several inequalities for these functions but characterization of such functions.

It is easy to check that the spectrum of the matrix [αAp + (1− α)Bp]1/p belongs to K for

any two matrices A,B ∈ H+
n with spectra in K. Now we define a new class of operator (p, h)-

convex functions as follows.

Definition 2.1.2. Let h : J → R+ be a non-zero super-multiplicative function. A non-negative

function f : K → R is said to be operator (p, h)-convex (or belongs to the class opgx(p, h,K))

if for any A,B ∈ H+
n with spectra in K, and for α ∈ [0, 1],

f
(

[αAp + (1− α)Bp]1/p
)
≤ h(α)f(A) + h(1− α)f(B). (2.1.4)

When p = 1, h(α) = α, we get the usual definition of operator convex functions on R+.

Remark 2.1.1. An operator (p, h)-convex function could be either operator monotone or op-

erator convex. However, there are many operator (p, h)-convex functions which are neither an

operator monotone function nor an operator convex function. Indeed, let p > 0, f(t) = ts

and h(α) = α. Then the function f is operator (p, h)-convex if and only if for any positive

semi-definite matrices A,B with spectra in K,

(αA+ (1− α)B)s/p ≤ αAs/p + (1− α)Bs/p.
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The last inequality means that the function g(t) = ts/p is operator convex which is equivalent to

the condition s/p ∈ [1, 2], or, s ∈ [p, 2p].

Now let us consider the following particular cases.

(i) For s ∈ [p, 2p] ∩ [0, 1], we have

f
(

[αAp + (1− α)Bp]1/p
)

= [αAp + (1− α)Bp]s/p

≤ α(Ap)s/p + (1− α)(Bp)s/p

= αAs + (1− α)Bs

= h(α)f(A) + h(1− α)f(B).

(2.1.5)

The first inequality follows from the operator convexity of the function g(t) = ts/p since

s/p ∈ [1, 2]. Therefore, the function f(t) = ts is either operator monotone or operator

(p, h)-convex.

(ii) For s ∈ [p, 2p] ∩ [1, 2], the function ts/p is operator convex. By using similar arguments

as in (2.1.5), we also get

f
(

[αAp + (1− α)Bp]1/p
)

= [αAp + (1− α)Bp]s/p

≤ α(Ap)s/p + (1− α)(Bp)s/p

= αAs + (1− α)Bs

= h(α)f(A) + h(1− α)f(B).

Thus, the function ts is both operator (p, h)-convex and operator convex for s ∈ [1, 2].

(iii) Unfortunately, in the case s ∈ [p, 2p] ∩ (R \ [0, 2]), the function f(t) = ts is operator

(p, h)-convex but neither operator convex nor operator monotone.
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2.1.1 Some properties of operator (p, h)-convex functions

The results of this subsection are taken from [51].

In the following theorems we establish some properties of operator (p, h)-convex functions.

Theorem 2.1.1. Let opgx(p, h,K) be the class of operator (p, h)-convex functions. The follow-

ing claim holds:

(i) If f, g ∈ opgx(p, h,K) and λ > 0, then f + g, λf ∈ opgx(p, h,K);

(ii) Let h1 and h2 be non-negative and non-zero super-multiplicative functions defined on an

interval J with h2 ≤ h1 in [0, 1]. If f ∈ opgx(p, h2, K), then f ∈ opgx(p, h1, K);

(iii) Let f ∈ opgx(p2, h,K) such that f is operator monotone function on K. If 1 ≤ p1 ≤ p2,

then f ∈ opgx(p1, h,K).

Proof. (i) Let f, g ∈ opgx(p, h,K). Then for any self-adjoint matrices A,B with spectra in K

and for α ∈ [0, 1] from the operator (p, h)-convexity of f and g,

f
(

[αAp + (1− α)Bp]1/p
)
≤ h(α)f(A) + h(1− α)f(B)

and

g
(

[αAp + (1− α)Bp]1/p
)
≤ h(α)g(A) + h(1− α)g(B).

Therefore,

(f + g)
(

[αAp + (1− α)Bp]1/p
)

= f
(

[αAp + (1− α)Bp]1/p
)

+ g
(

[αAp + (1− α)Bp]1/p
)

≤ h(α)f(A) + h(1− α)f(B) + h(α)g(A) + h(1− α)g(B)

= h(α)(f + g)(A) + h(1− α)(f + g)(B).
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and

(λf)
(

[αAp + (1− α)Bp]1/p
)

= λf
(

[αAp + (1− α)Bp]1/p
)

≤ λ [h(α)f(A) + h(1− α)f(B)]

= h(α)(λf)(A) + h(1− α)(λf)(B).

Thus, (f + g), λf ∈ opgx(p, h,K).

(ii) Suppose that f ∈ opgx(p, h2, K). Since h2(α) ≤ h1(α) for any α ∈ [0, 1], hence

f
(

[αAp + (1− α)Bp]1/p
)
≤ h2(α)f(A) + h2(1− α)f(B)

≤ h1(α)f(A) + h1(1− α)f(B).

Thus, f ∈ opgx(p, h1, K).

(iii) Put g(p) = (αAp + (1− α)Bp)1/p. By Theorem 2.0.1, the functionF (p) =

(
Ap +Bp

2

)1/p

is monotone increasing on [1,+∞). Then g(p1) ≤ g(p2) for 1 ≤ p1 ≤ p2. According to the

operator monotonicity of f , we have

f (g(p1)) ≤ f (g(p2)) ≤ h(α)f(A) + h(1− α)f(B).

Thus, f ∈ opgx(p1, h,K).

The following theorem is about properties of operator (p, h)-convex functions with condition

that sum of coefficients is smaller or equals to 1.

Theorem 2.1.2. Let K be an interval in R+ such that 0 ∈ K.

(i) If f ∈ opgx(p, h,K) such that f(0) = 0, then

f
(

[αAp + βBp]1/p
)
≤ h(α)f(A) + h(β)f(B) (2.1.6)

holds for arbitrary positive definite matricesA,B with spectra inK and all α, β ≥ 0 such

that α + β ≤ 1;
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(ii) Let h be a non-negative function such that h(α) < 1/2 for some α ∈ (0, 1/2). If f is a

non-negative function satisfying (2.1.6) for all matrices A,B with spectra in K and all

α, β ≥ 0 with α + β ≤ 1, then f(0) = 0.

Proof. (i) Let α, β ≥ 0, α+β = γ < 1, and let a and b be numbers such that a =
α

γ
and b =

β

γ
.

Then a+ b = 1. Hence we have

f
(

[αAp + βBp]1/p
)

= f
(

[aγAp + bγBp]1/p
)

≤ h(a)f
(

[γAp]1/p
)

+ h(b)f
(
[γBp])1/p

)
= h(a)f

(
[γAp + (1− γ)Op]1/p

)
+ h(b)f

(
[γBp + (1− γ)Op]1/p

)
≤ h(a)h(γ)f(A) + h(b)h(γ)f(B)

≤ h(aγ)f(A) + h(bγ)f(B)

= h(α)f(A) + h(β)f(B).

The first and the second inequalities follows from the definition of f , the third inequality

follows from the super-multiplicativity of h.

(ii) Suppose that f(0) > 0, then f(O) = f(0)I . Substituting A = B = O into (2.1.6), we

get

f(0)I = f
(

[αOp + βOp]1/p
)
≤ h(α)f(0)I + h(β)f(0)I. (2.1.7)

Let α = β. Dividing both sides of (2.1.7) by f(0), we get a contradiction

2h(α) ≥ 1 for all α ∈ (0, 1/2).

Thus, f(0) = 0.

Corollary 2.1.1. For s > 0, put hs(x) = xs (x > 0), and let 0 ∈ K ⊂ R+. For all f ∈

opgx(p, hs, K), the inequality (2.1.6) holds for all α, β ≥ 0 with α + β ≤ 1 if and only if

f(0) = 0.
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Proof. It is easy to check that hs(x) is super-multiplicative function.

If f ∈ opgx(p, hs, K), by Theorem 2.1.2, we just need to consider the case α, β ≥ 0 with

α + β ≤ 1.

Put α + β = γ ≤ 1, and let a and b be positive numbers such that a =
α

γ
and b =

β

γ
. Then

a+ b = 1 and,

f
(

[αAp + βBp]1/p
)

= f
(

[aγAp + bγBp]1/p
)

≤ h(a)f
(

[γAp]1/p
)

+ h(b)f
(

[γBp]1/p
)

= asf
(

[γAp]1/p
)

+ bsf
(

[γBp]1/p
)

≤ asγsf(A) + as(1− γ)sf(O) + bsγsf(B) + bs(1− γ)sf(O)

= asγsf(A) + bsγsf(B)

= αsf(A) + βsf(B).

Substituting A = B = O,α = β = 1/k (k ∈ N, k ≥ 2) into (2.1.6), and then let k tend to the

infinite, we get f(0) ≤ 0. Since f(0) ≥ 0 by the definition of operator (p, h)-convex functions,

hence f(0) = 0.

2.1.2 Jensen type inequality and its applications

This subsection is taken from [51].

Recall that the weighted Jensen inequality for a convex continuous function f on an interval

K is

f
(∑

λixi

)
≤
∑

λif(xi)

for any set of positive numbers xi in K and λi ∈ [0, 1] such that
∑n

i=1 λi = 1.

In this subsection we prove a matrix Jensen inequality for operator (p, h)-convex functions.

Theorem 2.1.3. Let h be a non-negative super-multiplicative function on J and f ∈ opgx(p, h,K).

Then for any set of k self-adjoint matrices Ai with spectra in K and any non-negative numbers
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αi(i = 1 · · · , k) satisfying
∑k

i=1 αi = 1,

f

[ k∑
i=1

αiA
p
i

]1/p ≤ k∑
i=1

h(αi)f(Ai). (2.1.8)

Proof. We will prove the theorem by induction on k.

When k = 2, inequality (2.1.8) reduces to (2.1.4).

Assume that (2.1.8) holds for any (k − 1) self-adjoint matrices (k ≥ 3) with spectra in K.

We need to prove (2.1.8) for any k self-adjoint matrices with spectra in K.

f

[ k∑
i=1

αiA
p
i

]1/p = f

[k−1∑
i=1

αiA
p
i + αkA

p
k

]1/p
= f

[(1− αk)

(
k−1∑
i=1

αi
1− αk

Api

)
+ αkA

p
k

]1/p
≤ h(1− αk)f

[k−1∑
i=1

αi
1− αk

Api

]1/p+ h(αk)f(Ak)

≤ h(1− αk)
k−1∑
i=1

h

(
αi

1− αk

)
f(Ai) + h(αk)f(Ak)

≤
k∑
i=1

h(αi)f(Ai).

The first and the second inequalities follow from the inductive assumption while the third one

follows from the super-multiplicativity of the function h.

Thus, (2.1.8) holds for any natural number k.

Remark 2.1.2. As a consequence of Theorem 2.1.3 we obtain the Jensen inequality for some

well-known functions classes.

• For h(α) = α and p = 1, inequality (2.1.8) reduces to the well-known Jensen inequality
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for operator convex functions:

f

(
k∑
i=1

αiAi

)
≤

k∑
i=1

αif(Ai),

for αi ∈ [0, 1] and
∑k

i=1 αi = 1.

• For h(α) =
1

α
and p = 1 we get the Jensen inequality for operator Q-class functions:

f

(
k∑
i=1

αiAi

)
≤

k∑
i=1

f(Ai)

αi
,

for αi ∈ (0, 1) and
∑k

i=1 αi = 1.

• For h(α) = 1, p = 1 we get the Jensen inequality for operator P -class functions:

f

(
k∑
i=1

αiAi

)
≤

k∑
i=1

f(Ai),

for αi ∈ [0, 1] and
∑k

i=1 αi = 1.

As an application of the Jensen type inequality (2.1.8) we prove a matrix inequality for index

set functions.

LetE be a finite nonempty set of positive integers and a set of positive semi-definite matrices

Ai (i ∈ E). Define an index set function F with respect to E and Aii∈E as follows:

F(E) = h(WE)f

[ 1

WE

∑
i∈E

wiA
p
i

]1/p−∑
i∈E

h(wi)f(Ai), (2.1.9)

where WE =
∑

i∈E wi, wi > 0. The function F satisfies the triangle inequality in the following

sense.

Theorem 2.1.4. Let h : R+ → R+ be a super-multiplicative function, f : K → R+ an operator

(p, h)-convex. Let M and E be finite non-empty sets of positive integers such that M ∩ E = ∅.
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Then for any wi > 0 (i ∈ M ∪ E), and for any positive semi-definite matrices Ai (i ∈ M ∪ E)

with spectra in K,

F(M ∪ E) ≤ F(M) + F(E). (2.1.10)

Proof. By the definition of the function F ,

F(M ∪ E) = h(WM∪E)f

[ 1

WM∪E

∑
i∈M∪E

wiA
p
i

]1/p− ∑
i∈M∪E

h(wi)f(Ai).

On account of the operator (p, h)-convexity of f and the super-multiplicativity of h, we get

h(WM∪E)f

[ 1

WM∪E

∑
i∈M∪E

wiA
p
i

]1/p
= h(WM∪E)f

[ WM

WM∪E

∑
i∈M

wi
WM

Api +
WE

WM∪E

∑
i∈E

wi
WE

Api

]1/p
≤ h(WM∪E)h

(
WM

WM∪E

)
f

[∑
i∈M

wi
WM

Api

]1/p
+ h(WM∪E)h

(
WE

WM∪E

)
f

[∑
i∈E

wi
WE

Api

]1/p
≤ h(WM)f

[ 1

WM

∑
i∈M

wiA
p
i

]1/p+ h(WE)f

[ 1

WE

∑
i∈E

wiA
p
i

]1/p .

(2.1.11)

Subtracting from both sides of (2.1.11) by
∑

i∈M∪E h(wi)f(Ai) and using the identity

∑
i∈M∪E

h(wi)f(Ai) =
∑
i∈M

h(wi)f(Ai) +
∑
i∈E

h(wi)f(Ai),

we obtain (2.1.10).
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2.1.3 Characterizations of operator (p, h)-convex functions

The results of this subsection are taken from [51].

Recall the convex inequality for an operator convex function f on K,

f(αA+ (1− α)B) ≤ αf(A) + (1− α)f(B), (2.1.12)

where A,B are self-adjoint matrices with spectra in K and 0 ≤ α ≤ 1. If we replace numbers α

and (1− α) in the convex combination αA+ (1− α)B by matrices, we still have the following

convex inequality for operator convex function [46, Theorem 4.22]:

f (CAC∗ +DBD∗) ≤ Cf(A)C∗ +Df(B)D∗, (2.1.13)

whenever Hermitian matrices C,D with spectra in K and CC∗ + DD∗ = I. This inequality is

known as the Hansen-Pedersen inequality.

In the following theorem we prove a Hansen-Pedersen type inequality for operator (p, h)-

convex functions.

Theorem 2.1.5. Let h : J → R+ be a super-multiplicative function, f : K → R+ an operator

(p, h)-convex function. Then for any pair of self-adjoint matrices A,B with spectra in K and

for matrices C,D such that CC∗ +DD∗ = I ,

f
(
[CApC∗ +DBpD∗]1/p

)
≤ 2h(1/2) (Cf(A)C∗ +Df(B)D∗) . (2.1.14)

Proof. From the condition CC∗ +DD∗ = I , it implies that we can find a unitary block matrix

U :=

C D

X Y

 ,
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where the entries X and Y are chosen properly. Then

U∗ =

 C X∗

D∗ Y

 ,
and

U

Ap O

O Bp

U∗ =

CApC∗ +DBpD∗ CApX∗ +DBpY ∗

XApC∗ + Y BpD∗ XApX∗ + Y BpY ∗

 .
For V =

−I O

O I

, we have

1

2
V

A11 A12

A21 A22

V +
1

2

A11 A12

A21 A22

 =

A11 O

O A22

 .

Identifying

A11 A12

A21 A22

 = U

Ap O

O Bp

U∗, we get

Z :=
1

2
V U

Ap O

O Bp

U∗V +
1

2
U

Ap O

O Bp

U∗
=

CApC∗ +DBpD∗ O

O XApX∗ + Y BpY ∗

 .
It implies Z11 = CApC∗ +DBpD∗ and f(Z

1/p
11 ) = f([CApC∗ +DBpD∗]1/p).

On account of the (p, h)-operator convexity of f , we get
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f(Z1/p) = f


1

2
V U

Ap O

O Bp

U∗V +
1

2
U

Ap O

O Bp

U∗
1/p


≤ h

(
1

2

)
V Uf


Ap O

O Bp

1/p
U∗V + h

(
1

2

)
Uf


Ap O

O Bp

1/p
U∗

= 2h

(
1

2

)1

2
V Uf

A O

O B

U∗V +
1

2
Uf

A O

O B

U∗


= 2h

(
1

2

)Cf(A)C∗ +Df(B)D∗ O

O XAX∗ + Y BY ∗

 ,
where

1

2
V UU∗V +

1

2
UU∗ = I.

Therefore,

f(Z
1/p
11 ) = f([CApC∗ +DBpD∗]1/p)

≤ 2h

(
1

2

)
[Cf(A)C∗ +Df(B)D∗].

Tikhonov [81] showed a characterization of operator convex functions by changing roles of

numbers and matrices in the Jensen inequality (2.1.12).

Lemma 2.1.1 ([81]). For a function f : K → R, the following conditions are equivalent:

(i) f is matrix convex;

(ii) for any natural number k, for any family of positive operators {Ai}ki=1 in a finite-

dimensional Hilbert space H, such that
∑k

i=1Ai = IH, and arbitrary numbers xi ∈ K, the

following inequality holds,

f

(
k∑
i=1

xiAi

)
≤

k∑
i=1

f(xi)Ai.
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In the following theorem, we obtain several equivalent conditions for a function to become

operator (p, h)-convex including Tikhonov’s characterization. The proof of the following theo-

rem is adapted from [42] and [81].

Theorem 2.1.6. Let f be a non-negative function on the interval K such that f(0) = 0,

and h a non-negative and non-zero super-multiplicative function on J satisfying 2h(1/2) ≤

α−1h(α) (α ∈ (0, 1)). Then the following statements are equivalent:

(i) f is an operator (p, h)-convex function;

(ii) for any contraction V (||V || ≤ 1) and self-adjoint matrix A with spectrum in K,

f
(
[V ∗ApV ]1/p

)
≤ 2h(1/2)V ∗f(A)V ;

(iii) for any orthogonal projection Q and any self-adjoint matrix A with σ(A) ⊂ K,

f
(
[QApQ]1/p

)
≤ 2h(1/2)Qf(A)Q;

(iv) for any natural number k, for any families of positive operators {Ai}ki=1 in a finite dimen-

sional Hilbert space H satisfying
∑k

i=1 αiAi = IH (the identity operator in H) and for

arbitrary numbers xi ∈ K,

f

[ k∑
i=1

αix
p
iAi

]1/p ≤ k∑
i=1

h(αi)f(xi)Ai. (2.1.15)

Proof. Every orthogonal projection with norm of 1 is a contraction. Therefore, the implication

(ii)⇒ (iii) is obvious.

Let us prove the implication (i)⇒ (ii). Suppose that f ∈ opgx(p, h,K). Then by Theorem

2.1.5, for any matrices C,D ∈Mn such that CC∗ +DD∗ = I we have

f
(
[CApC∗ +DBpD∗]1/p

)
≤ 2h(1/2) (Cf(A)C∗ +Df(B)D∗) .
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Since ||V || ≤ 1, we can choose W such that V V ∗ + WW ∗ = I . If we choose B = O, then

we get that f(B) = f(O) = O. Therefore,

f
(
[V ∗ApV ]1/p

)
= f((V ∗ApV +W ∗BpW )1/p)

≤ 2h(1/2) (V ∗f(A)V +W ∗f(B)W )

≤ 2h(1/2)(V ∗f(A)V ).

(iii)⇒ (i). Let A and B be self-adjoint matrices with spectra in K and 0 < α < 1. Define

C :=

A O

O B

 , U :=

 √
αI −

√
1− αI

√
1− αI

√
αI

 , Q :=

 I O

O O

 .
Then C = C∗ with σ(C) ⊂ K, U is a unitary and Q is an orthogonal projection. Furthermore,

U∗CpU =

 αAp + (1− α)Bp −
√
α− α2Ap +

√
α− α2Bp

−
√
α− α2Ap +

√
α− α2Bp (1− α)Ap + αBp


is a self-adjoint matrix. Since

QU∗CpUQ =

αAp + (1− α)Bp O

O O

 ,
and ||UQ|| ≤ 1, we get

f ([αAp + (1− α)Bp]1/p
)

O

O O

 = f
(

(QU∗CpUQ)1/p
)

≤ 2h(1/2)QU∗f(C)UQ

= 2h(1/2)

αf(A) + (1− α)f(B) O

O O

 .
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According to the property of h, the last inequality implies

f
(

[αAp + (1− α)Bp]1/p
)
≤ 2h(1/2) [αf(A) + (1− α)f(B)]

≤ h(α)f(A) + h(1− α)f(B).

(iv) ⇒ (i). Let X, Y be two arbitrary self-adjoint operators on H with spectra in K, and

α ∈ (0, 1). Let

X =
n∑
i=1

λiPi, Y =
n∑
j=1

µjQj,

be the spectral decompositions of X and Y . Then it follows that

α
n∑
i=1

Pi + (1− α)
n∑
j=1

Qj = IH,

where IH is the identity operator on H. On account of (2.1.15),

f
(

[αXp + (1− α)Y p]1/p
)

= f

[ n∑
i=1

αλpiPi +
n∑
j=1

(1− α)µpiQj

]1/p ,

≤
n∑
i=1

h(α)f(λi)Pi +
n∑
j=1

h(1− α)f(µj)Qj,

= h(α)
n∑
i=1

f(λi)Pi + h(1− α)
n∑
j=1

f(µj)Qj,

= h(α)f(X) + h(1− α)f(Y ).

(i) ⇒ (iv). By applying the proof of Lemma 2.1.1 (ii), by Naimark’s theorem [71], there

exists a Hilbert space H containing H and a family of mutually orthogonal projections Pi in H

such that
∑k

i=1 Pi = IH and αiAi = PPiP |H(i = 1, 2, ..., k), where P is the projection from H
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onto H. Then we have

f

[ k∑
i=1

αix
p
iAi

]1/p = f

[ k∑
i=1

xpiPPiP |H

]1/p ,

= f

[P ( k∑
i=1

xpiPi

)
P |H

]1/p ,

≤ 2h

(
1

2

)
Pf

[ k∑
i=1

xpiPi

]1/pP |H,

= 2h

(
1

2

)
P

(
k∑
i=1

f(xi)Pi

)
P |H,

= 2h

(
1

2

) k∑
i=1

f(xi)PPiP |H,

= 2h

(
1

2

) k∑
i=1

αif(xi)Ai,

≤
k∑
i=1

h(αi)f(xi)Ai.

Remark 2.1.3. Here we give an example for the function h which is different from the identify

function and satisfies the conditions in Theorem 2.1.6. It is easy to check that for the function

h(x) = x3 − x2 + x and for any x, y ∈ [0, 1],

h(xy)− h(x)h(y) = xy(x+ y)(1− x)(1− y) ≥ 0.

Therefore, h is super-multiplicative on [0, 1]. At the same time, the function h(x)/x = x2−x+1

attains minimum at x = 1/2, and hence 2h(1/2) ≤ h(x)/x for any x ∈ (0, 1).

In the following corollary we obtain a relation between operator (p, h)-convex functions and

operator monotone functions on R+.
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Corollary 2.1.2. Let f be operator (1, h)-convex function on R+ such that f(0) = 0. Then for

any positive definite matrices A ≤ B,

A−1f(A) ≤ 2h(1/2)B−1f(B).

In the case when 2h(1/2) ≤ 1, the function t−1f(t) is operator monotone on (0,∞), and

hence the function f(t) is operator convex.

Proof. Let 0 ≤ A ≤ B. Then we can find C such that A1/2 = CB1/2, and hence A = CBC∗.

Therefore,

A−1f(A) = B−1/2C−1f(CBC∗)(C∗)−1B−1/2

≤ 2h(1/2)B−1/2C−1Cf(B)C∗(C∗)−1B−1/2

= 2h(1/2)B−1f(B).

In the case when 2h(1/2) ≤ 1, from the above inequality we get

A−1f(A) ≤ B−1f(B),

that means, the function t−1f(t) is operator monotone, and as a consequence of that, the function

f(t) is operator convex by [42].

Remark 2.1.4. It is easy to check that the function h(x) = (x3−x2+x)/2 is super-multiplicative

and satisfies the conditions in Theorem 2.1.6 and Corollary 2.1.2.

In next section, let r, s be positive numbers. We define a new class of operator (r, s)-convex

functions with respect to the matrix power mean, and study their properties. We also provide a

series of equivalent conditions for a function to be operator (r, s)-convex.
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2.2 Operator (r, s)-convex functions

The results of this section are taken from [48].

Let r, s be positive numbers. For X = (A1, A2) of Hermitian matrices with spectra in K and

a function f . We denote f(X) = (f(A1), f(A2)). For a pair of positive numbers W = (ω1, ω2).

We set W2 := ω1 + ω2 and define the weighted matrix r-power mean M [r](X,W ) by

M [r](X,W ) :=

[
1

W
(ω1A

r
1 + ω2A

r
2)

]1/r
.

Definition 2.2.1. Let K be a r-convex subset of R+. A continuous function f : K → (0,∞) is

said to be operator (r, s)-convex if

f(M [r](X,W )) ≤M [s](f(X),W ) (2.2.16)

If the inequality (2.2.16) is reversed, f is operator (r, s)-concave.

Remark 2.2.1. The reader may notice a similarity between this notion with the notion of (p, h)-

convex functions introduced in the previous section. However there should be no confusion as

h is a non-constant function (being a super-multiplicative function).

Motivated by two specific cases of operator (p, h)-convexity and operator (r, s)-convexity,

we intend to consider a general definition for this type of operator convexity as follows: Let

p, q be positive real numbers, h be super-multiplicative non-negative real valued function. A

function f is called operator (p, h, q)-convex if

f
(

[αAp + (1− α)Bp]1/p
)
≤ [h(α)f(A)q + h(1− α)f(B)q]1/q , α ∈ [0, 1].

If q = 1 then we get the class of operator (p, h, 1)-convex or called operator (p, h)-convex,

and if h ≡ id is identity function, we get the class of operator (p, id, q)-convex functions, or

called as operator (r, s)-convex functions. In the future, we intend to continue to investigate this

general class of operator functions for some different cases.
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Notice that the class of operator convex functions is very important in matrix analysis and

quantum information theory. The class of operator log-convex functions was studied by Hiai

and Ando [11] and got fully characterized as operator decreasing functions.

Based on the results in theorem 2.0.1 of Hiai and Audenaert [12], one can describe all power

functions which are operator (r, s)-convex on R+. Indeed, let r and s be two positive numbers,

f(x) = xα (α ∈ R). For s ≥ 1 and
αs

r
∈ [1, 2], the function t

αs
r is operator convex, and t1/s is

operator monotone. Then,

f(M [r]) = (M [r])α =

{[
1

W
(ω1A

r
1 + ω2A

r
2)

]1/r}α

=

{[
1

W
(ω1A

r
1 + ω2A

r
2)

]αs/r}1/s

≤
[

1

W
(ω1A

αs
1 + ω2A

αs
2 )

]1/s
=

(
1

W
[ω1f(A1)

s + ω2f(A2)
s]

)1/s

= M [s] (f(X),W ) .

Thus, f is an operator (r, s)-convex function.

For simplicity, we write f(A)s instead of {f(A)}s.

If the function t1/s is operator convex, by using the similar arguments we can see that f is

operator (r, s)-convex.

Another example of operator (r, s)-convex functions are given by F. Hiai as follows: For

s, r > 0 and for a function f : [0,∞)→ R, we denote fs,r(x) = [f(x1/r)]s. Then, by replacing

Ar, Br with A,B, the inequality (2.2.16) is rewritten as

[
fs,r

(
A+B

2

)]1/s
≤
[
fs,r(A) + fs,r(B)

2

]1/s
. (2.2.17)

Therefore, for s ≥ 1, a sufficient condition for (2.2.17) to hold is that fs,r is operator convex.
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For example, if fs,r(x) = x log x, then f(x) = r1/s(xr log x)1/s. Hence (2.2.17) holds for

f(x) = (xr log x)1/s with r > 0 and s ≥ 1. On the other hand, if 0 < s ≤ 1, then the operator

convexity of fs,r is a necessary condition for (2.2.17) to hold. Also, for any s > 0, the numerical

convexity of fs,r is a necessary condition.

In this section, we study some basic properties of operator (r, s)-convex functions. We

also prove the Jensen, Hansen-Pedersen and Rado type inequalities for them. Some equivalent

conditions for a function f to be operator (r, s)-convex are also provided.

We also obtain some properties of operator (r, s)-convex functions in the following proposi-

tions.

Proposition 2.2.1. Let f be a continuous function on K and 1 < s ≤ s′. The following

assertions hold.

(i) If f is operator (r, s)-convex then f is also operator (r, s′)-convex;

(ii) If f is operator (r, s′)-concave then f is also operator (r, s)-concave.

Proof. Let f be operator (r, s)-convex and s ≤ s′. Then the function ts/s′ is operator concave.

We have

M [s′] (f(X),W ) =
[ω1

W
f(A1)

s′ +
ω2

W
f(A2)

s′
]1/s′

=

([ω1

W
f(A1)

s′ +
ω2

W
f(A2)

s′
]s/s′)1/s

≥
[ω1

W
f(A1)

s +
ω2

W
f(A2)

s
]1/s

= M [s](f(X),W )

≥ f(M [r](X,W )).

Thus, f is also operator (r, s′)-convex. The second property can be proved similarly.

Proposition 2.2.2. Let f, g be continuous on K and r, s > 0.

(i) If f is operator (r, s)-convex and α > 0, then so is αf ,
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(ii) If f, g are operator (r, s)-convex and s ∈ [1/2, 1], then (f + g) is r-convex.

Proof. (i) trivially follows from the definition of f . We provide a proof of (ii). Let f, g be

operator (r, s)-convex functions and s ∈ [1/2, 1]. Then the function t1/s is operator convex.

(f + g)
(
M [r](X,W )

)
= f

(
M [r](X,W )

)
+ g

(
M [r](X,W )

)
= f

([ω1

W
Ar1 +

ω2

W
Ar2

]1/r)
+ g

([ω1

W
Ar1 +

ω2

W
Ar2

]1/r)
≤
([ω1

W
f(A1)

s +
ω2

W
f(A2)

s
])1/s

+
([ω1

W
g(A1)

s +
ω2

W
g(A2)

s
])1/s

≤ ω1

W
f(A1) +

ω2

W
f(A2) +

ω1

W
g(A1) +

ω2

W
g(A2)

=
ω1

W
(f + g)(A1) +

ω2

W
(f + g)(A2).

The first inequality follows from the definition of f , the second one follows from the operator

convexity of t1/s. Thus, (f + g) is operator r-convex.

Remark 2.2.2. If s does not belong to [1/2, 1], the function (f + g) may not be operator r-

convex even f and g are operator (r, s)-convex. Indeed, for s = 2 the function t1/2 is operator

concave. It is easy to see that f(x) = x
2r
3 and g(x) = x

5r
6 are operator (r, s)-convex. At the

same time, we have

(f + g)

([ω1

W
Ar1 +

ω2

W
Ar2

]1/r)
= f

([ω1

W
Ar1 +

ω2

W
Ar2

]1/r)
+ g

([ω1

W
Ar1 +

ω2

W
Ar2

]1/r)
=
(ω1

W
Ar1 +

ω2

W
Ar2

)2/3
+
(ω1

W
Ar1 +

ω2

W
Ar2

)5/6
≥ ω1

W
A

2r/3
1 +

ω2

W
A

2r/3
2 +

ω1

W
A

5r/6
1 +

ω2

W
A

5r/6
2

=
ω1

W
(f + g)(A1) +

ω1

W
(f + g)(A2).

Therefore, (f + g) is operator r-concave.
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2.2.1 Jensen and Rado type inequalities

The results of this section are taken from [48].

In the following theorem we prove a Jensen type inequality for operator (r, s)-convexity. Let

X = (A1, ..., Am) be Hermitian matrices with spectra in K and W = (ω1, ..., ωm) be positive

numbers. Set Wm = ω1 + ...+ ωm. The weighted matrix r-power mean M [r]
m (X,W ) is defined

by

M [r]
m (X,W ) :=

(
1

Wm

m∑
i=1

ωiA
r
i

)1/r

.

Theorem 2.2.1. Let r, s be arbitrary positive numbers such that s ≥ 1, and m be a natural

number. If f is operator (r, s)-convex then

f(M [r]
m (X,W )) ≤M [s]

m (f(X),W ). (2.2.18)

where X = (A1, ..., Am) and Wm = ω1 + ...+ ωm.

When f is operator (r, s)-concave, the inequality (2.2.18) is reversed.

Proof. We prove the theorem by mathematical induction.

With m = 2, the inequality holds by the Definition 2.2.1. Suppose that (2.2.18) holds for

(m− 1), i.e.,

f(M
[r]
m−1(X,W )) ≤M

[s]
m−1(f(X),W ).

We prove (2.2.18) for m. We have

f
(
M [r]

m (X,W )
)

= f

[ 1

Wm

m∑
i=1

ωiA
r
i

]1/r
= f

[Wm−1

Wm

m−1∑
i=1

ωi
Wm−1

Ari +
ωm
Wm

Arm

]1/r
≤

Wm−1

Wm

f

[m−1∑
i=1

ωi
Wm−1

Ari

]1/rs

+
ωm
Wm

f(Am)s

1/s
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≤

(
Wm−1

Wm

[
m−1∑
i=1

ωi
Wm−1

f(Ai)
s

]
+
ωm
Wm

f(Am)s

)1/s

=

[
m∑
i=1

ωi
Wm

f(Ai)
s

]1/s
= M [s]

m (f(X),W ) .

The last inequality follows from the inductive assumption and the operator monotonicity of the

function x1/s.

Now, for ai (i = 1, ...,m) to be positive number, a = (a1, a2, ..., am). Let us denote the

arithmetic mean Ak(a) and the geometric mean Gk(a) as follows:

Ak(a) =
1

k

k∑
i=1

ai, Gk(a) = k
√
a1a2...ak,

where k ∈ {1, 2, ...,m}. Let f be convex function. The Rado inequality is known in the

literature as follows:

m

[∑m
i=1 f(xi)

m
− f (Am(xi))

]
≥ (m− 1)

[∑m−1
i=1 f(xi)

m− 1
− f (Am−1(xi))

]

Also, we proves a Rado type inequality for operator (r, s)-convex functions.

Theorem 2.2.2. Let r and s be two positive numbers and f a continuous function on K. For

m ∈ N, X = (A1, ..., Am) and W = (ω1, ..., ωm), we denote

am = Wm

(
M [s]

m [f(X),W ]s − f
(
M [r]

m [X,W ]
)s)

. (2.2.19)

Then, the following assertions hold:

(i) If f is operator (r, s)-convex then {am}∞m=1 is an increasing monotone sequence;

(ii) If f is operator (r, s)-concave then {am}∞m=1 is a decreasing monotone sequence.
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Proof. We have

f
[
M [r]

m (X,W )
]s

= f

[ 1

Wm

m∑
i=1

ωiA
r
i

]1/rs

= f

[Wm−1

Wm

m−1∑
i=1

ωi
Wm−1

Ari +
m

Wm

Arm

]1/rs

≤ Wm−1

Wm

f

[m−1∑
i=1

ωi
Wm−1

Ari

]1/rs

+
ωm
Wm

f(Am)s.

Consequently,

Wmf
(
M [r]

m (X,W )
)s ≤ ωmf(Am)s +Wm−1f

(
M

[r]
m−1(X,W )

)s
.

Therefore,

am = Wm

(
1

Wm

m∑
i=1

ωif(Ai)
s − f

(
M [r]

m (X,W )
)s)

=
m∑
i=1

ωif(Ai)
s −Wmf

(
M [r]

m (X,W )
)s

≥
m∑
i=1

ωif(Ai)
s − ωmf(Am)s −Wm−1f

(
M

[r]
m−1(X,W )

)s
=

m−1∑
i=1

ωif(Ai)
s −Wm−1f

(
M

[r]
m−1(X,W )

)s
= Wm−1

[
M

[s]
m−1 (f(X,W ))s − f

(
M

[r]
m−1(X,W )

)s]
= am−1.
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2.2.2 Some equivalent conditions to operator (r, s)-convexity

The results of this section are taken from [48].

We replace the numbers w1

W
and w2

W
in the combination w1

W
Ar1 + w2

W
Ar2 by matrices. We get

the following result.

Theorem 2.2.3. Let f : K → R+ be an operator (r, s)-convex function. Then for any pair of

positive definite A,B with spectra in K and for matrices C,D such that CC∗ +DD∗ = I,

f((CArC∗ +DBrD∗)1/r) ≤ (Cf(A)sC∗ +Df(B)sD∗)1/s. (2.2.20)

Proof. Proving similarly as in Theorem 2.1.5, we also find a unitary block matrix

U :=

C D

X Y

 ,
and define the matrix

Z :==

CArC∗ +DBrD∗ O

O XArX∗ + Y BrY ∗



is diagonal, where

A11 A12

A21 A22

 = U

Ar O

O Br

U∗ and V =

−I O

O I

.

It implies Z11 = CArC∗ +DBrD∗ and f(Z
1/r
11 ) = f((CArC∗ +DBrD∗)1/r).
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On account of the (r, s)-operator convexity of f , we have

f(Z1/r) = f


1

2
V U

Ar O

O Br

U∗V +
1

2
U

Ar O

O Br

U∗
1/r



≤

1

2
f


V U

Ar O

O Br

U∗V
1/r


s

+
1

2
f


U

Ar O

O Br

U∗
1/r


s

1
s

=

1

2
V Uf

A O

O B

s

U∗V +
1

2
Uf

A O

O B

s

U∗


1
s

=

Cf(A)sC∗ +Df(B)sD∗ O

O Xf(A)sX∗ + Y f(B)sY ∗

 1
s

,

where
1

2
V UU∗V +

1

2
UU∗ = I. Therefore,

f(Z
1/r
11 ) = f([CArC∗ +DBrD∗]1/r)

≤ [Cf(A)sC∗ +Df(B)sD∗]
1
s .

In the following theorem, we obtain several equivalent conditions for a function to be oper-

ator (r, s)-convex.

Theorem 2.2.4. Let f be a non-negative function on the interval K such that f(0) = 0. Then

the following statements are equivalent:

(i) f is an operator (r, s)-convex function;

(ii) for any contraction V (||V || ≤ 1) and for any positive semi-definite matrix A with spec-

trum in K,

f
(
[V ∗ArV ]1/r

)
≤ (V ∗f(A)sV )1/s ;
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(iii) for any orthogonal projection Q and for any positive semi-definite matrix A with σ(A) ⊂

K,

f
(
[QArQ]1/r

)
≤ (Qf(A)sQ)1/s ;

(iv) for any natural number k and for any families of positive operators {Ai}ki=1 in a finite

dimensional Hilbert space H such that
∑k

i=1 αiAi = IH (the identity operator in H) and

for arbitrary numbers xi ∈ K,

f

[ k∑
i=1

αix
r
iAi

]1/r ≤ ( k∑
i=1

αif(xi)
sAi

)1/s

. (2.2.21)

Proof. Let us prove the implication (i)⇒ (ii).

Suppose that f is an operator (r, s)-convex function. Then by Theorem 2.2.3 we have

f(CArC∗ +DBrD∗)1/r ≤ [Cf(As)C∗ +Df(Bs)D∗]1/s

whenever CC∗ + DD∗ = I . Since ||V || ≤ 1, we can choose W such that V V ∗ + WW ∗ = I .

Choosing B = O, we have that f(B) = f(O) = f(0)O = O. Hence,

f
(
(V ∗ArV )1/r

)
≤ f

(
(V ∗ArV +W ∗BrW )1/r

)
≤ [V ∗f(A)sV +W ∗f(B)sW ]1/s

= [V ∗f(A)sV ]1/s .

The implication (ii)⇒ (iii) is obvious.

(iii)⇒ (i). Let A and B be self-adjoint matrices with spectra in K and 0 < λ < 1. Define

C :=

A O

O B

 , U :=

 √λI −
√

1− λI
√

1− λ
√
λI

 , Q :=

 I O

O O

 .
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Then C = C∗ with σ(C) ⊂ K, and U is a unitary, Q is an orthogonal projection and

U∗CrU =

 λAr + (1− λ)Br −
√
λ− λ2Ar +

√
λ− λ2Br

−
√
λ− λ2Ar +

√
λ− λ2Br (1− λ)Ar + λBr


is Hermitian. Since

QU∗CrUQ =

λAr + (1− λ)Br O

O O


and ||UP || ≤ 1, hence

f

λAr + (1− λ)Br O

O O

1/r

= f
(
(QU∗CrUQ)1/r

)
≤ [QU∗f(C)sUQ]1/s

=

[λf(A)s + (1− λ)f(B)s]1/s O

O O

 .
Therefore, f (λAr + (1− λ)Br)1/r ≤ [λf(A)s + (1− λ)f(B)s]1/s.

(iv) ⇒ (i). Let X, Y be two arbitrary self-adjoint operators on H with spectra in K, and

α ∈ (0, 1). Let X =
∑n

i=1 λiPi and Y =
∑n

j=1 µjQj be the spectral decompositions of X and

Y , respectively. Then we have

α
n∑
i=1

Pi + (1− α)
n∑
j=1

Qj = IH.

On account of (2.2.21), we have

f
(

[αAr + (1− α)Br]1/r
)

= f

[α n∑
i=1

λriPi + (1− α)
n∑
j=1

µrjQj

]1/r
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≤

αf
( n∑

i=1

λr

)1/r
s Pi + (1− α)f

( n∑
j=1

µrj

)1/r
sQj

1/s

=

[
αf(

n∑
i=1

λiPi)
s + (1− α)f(

n∑
j=1

µjQj)
s

]1/s
≤ [αf(A)s + (1− α)f(B)s]1/s .

(i)⇒ (iv). Naimark’s theorem [71] states that there exitsts a Hilbert space H containing H

and a family of mutually orthogonal projections Pi in H such that
∑k

i=1 Pi = IH and αiAi =

PPiP |H (i = 1, 2, · · · , k), where P is the projection from H onto H and IH is the identity

operator inH. Then,

f

[ k∑
i=1

αix
r
iAi

]1/r = f

[ k∑
i=1

xriPPiP |H

]1/r
= f

[P k∑
i=1

xriPiP |H

]1/r
≤

Pf
[ k∑

i=1

xriPi

]1/rs

P |H

1/s

=

[
Pf

(
k∑
i=1

xiPi

)s

P |H

]1/s

=

[
P

(
k∑
i=1

f(xi)Pi

)s

P |H

]1/s

=

(
k∑
i=1

Pf(xi)
sPiP |H

)1/s

=

(
k∑
i=1

f(xi)
sPPiP |H

)1/s

=

(
k∑
i=1

αif(xi)
sAi

)1/s

.
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Chapter 3

Matrix inequalities and the in-sphere

property

The classical Cauchy inequality form non-negative numbers a1, · · · , am is stated as follows:

a1 + a2 + · · ·+ am
m

≥ m
√
a1a2 · · · am.

There are many reverse versions of the above inequality. One of the well-known reverse

Cauchy inequalities is the following one:

a1 + a2 + · · ·+ am
m

≤ m
√
a1a2 · · · am +

1

m

∑
1≤i,j≤m

|ai − aj|. (3.0.1)

Besides, for a, b ≥ 0 and 0 ≤ s ≤ 1, the Young inequality is as follows:

sa+ (1− s)b ≥ asb1−s ≥ a+ b− |a− b|
2

.

At the same time, it is obvious that,

min{a, b} =
a+ b

2
− |a− b|

2
≤ a1−sbs = a]sb, or

a+ b

2
− a]sb ≤

|a− b|
2

, (3.0.2)
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where a]sb := a1/2(a−1/2ba−1/2)sa1/2 is the s-power mean of a and b. The following inequality

for the Heinz mean is an immediate consequence of (3.0.2)

a+ b

2
− 1

2
(asb1−s + a1−sbs) ≤ |a− b|

2
. (3.0.3)

Recall that the arithmetic-geometric means inequality has a refinement given by

√
ab ≤ asb1−s + a1−sbs

2
≤ a+ b

2
(3.0.4)

for all s ∈ [0, 1].

Inequalities (3.0.2) and (3.0.3) geometrically mean that the curve a]sb and
asb1−s + a1−sbs

2

(s ∈ [0, 1]) are contained inside the circle with center at
a+ b

2
and radius being equal to half of

the distance between a and b. In other words, the power mean and the Heinz mean satisfy the

in-sphere property with respect to the Euclidean distance.

In this chapter, we investigate matrix versions of (3.0.2) and (3.0.3). More precisely, in the

first section of the chapter we consider generalized reverse Cauchy inequalities for two positive

definite matrices A and B and show that generalized reverse Cauchy inequalities hold under the

condition AB+BA ≥ 0. Moreover, we also show that the generalized reverse Cauchy inequal-

ity and the generalized Powers-Størmer inequality holds with respect to the unitarily invariant

norms under the same condition. In the second section we prove some reverse inequalities of

the matrix Heinz means with respect to unitarily invariant norms. And the last section dedicates

the in-sphere property for matrix means.
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3.1 Generalized reverse arithmetic-geometric mean inequal-

ities

The results of this section are taken from [50].

Young inequalities for two positive matrices are important in estimating some quantum quan-

tities, such as the quantum Chernoff bound [59] and the Tsallis relative entropy [33]. More

precisely, the following trace inequality for the exponential positive semi-definite matrices (also

called the generalized Powers-Størmer inequality) was studied by Audenaert et al. [10]: for

0 ≤ ν ≤ 1,

Tr(A+B − |A−B|) ≤ 2 Tr(AνB1−ν).

Noting that f(t) = tν(0 ≤ ν ≤ 1) is operator monotone, Trung Hoa Dinh, Minh Toan Ho and

Hiroyuki Osaka formulated a more general inequality and showed in [53] that

Tr(A+B − |A−B|) ≤ 2 Tr(f(A)
1
2 g(B)f(A)

1
2 )

holds for any operator monotone function f on [0,∞) with f((0,∞)) and g(t) = t
f(t)

(t ∈

(0,∞)), g(0) = 0.

Furuichi [32], however, showed that the trace inequality

1

2
Tr(A+B − |A−B|) ≤ Tr(A

1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 ) (3.1.5)

is not true in general.

When m = 2 and ν =
1

2
, a natural matrix form of the reverse arithmetic-geometric mean

inequality (3.0.1) for two positive definite matrices A and B could be written as

A+B

2
≤ A

1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 +
|A−B|

2
,

where A]B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 is the geometric mean of A,B.
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In general, the last inequality has the following form

A+B

2
− AσfB ≤

|A−B|
2

, (3.1.6)

where AσfB = A
1
2f(A−

1
2BA−

1
2 )A

1
2 is the operator mean corresponding to the function f in

the sense of Kubo and Ando [61]. We call inequality (3.1.6) the generalized reverse arithmetic-

geometric mean (AGM) inequality. Such inequalities were studied by many authors. For ex-

ample, Fujii-Nakamura-Pečarić-Seo [31] showed that for a symmetric operator mean with the

representing function f and matrices 0 < kI ≤ A,B ≤MI (where k < M ),

A∇B − AσfB ≤M

(
k∇M
kσM

− 1

)
I.

The main results in this section are as follows.

Theorem 3.1.1. Let f be a strictly positive operator monotone function on [0,∞) with f((0,∞)) ⊂

(0,∞) and f(1) = 1. Then for any positive semi-definite matricesA andB withAB+BA ≥ 0,

A+B − |A−B| ≤ 2AσfB. (3.1.7)

Proof. Let A ∈ H+
n . Since f is continuous, we may assume that A is invertible. Let P =

(A−B)+ and Q = (A−B)− are the positive and negative parts of A−B, respectively. Then

A−B = (A−B)+ − (A−B)− = P −Q,

and

|A−B| = (A−B)+ + (A−B)− = P +Q.

From the assumption,

A+B − (P +Q) = (A+B)2 − |A−B|2 = 2(AB +BA) ≥ 0.
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Consequently,

(A+B)2 ≥ |A−B|2.

Since the function t1/2 is operator monotone, therefore

[(A+B)2]1/2 ≥ (|A−B|2)1/2 = |A−B|.

On other hand, A−B = P −Q and |A−B| = P +Q, then

A− P = B −Q =
A− P +B −Q

2
=
A+B − |A−B|

2
≥ 0.

Moreover,

A− P = B −Q ≤ B (since Q ≥ 0)

Hence,

A−
1
2 (A− P )A−

1
2 ≤ A−

1
2BA−

1
2 .

Consequently, by the operator monotonicity of the function f and the last inequality we have

f(A−
1
2 (A− P )A−

1
2 ) ≤ f(A−

1
2BA−

1
2 ).

By the monotonicity of σf , A− P ≤ A and A− P ≤ A− P ,

(A− P )σf (A− P ) ≤ Aσf (A− P ).

Then

1

2
(A+B − |A−B|) = A− P

= (A− P )σf (A− P )

≤ Aσf (A− P )

≤ AσfB.
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The following example shows that the condition AB +BA ≥ 0 is necessary.

Example 3.1.1. Let f(t) = t
1
2 . Then σf is the geometric mean. For the following matrices

A =

 1 0

0 3

 , B =

 1
√

3
√

3 3

 ,

with the help of Matlab, we have

2A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 − (A+B − |A−B|) =

 1.1463 0.7174

0.7174 −0.0253

 .

This shows that the matrix inequality (3.1.7) is not generally true. Notice that in this case

det(AB +BA) = −2 < 0, which means that AB +BA is not positive semi-definite.

Recall that an operator monotone function f is called symmetric if f(t) = tf(t−1). It is well

known [61] that a symmetric positive operator monotone function f with f(1) = 1 satisfies

2t

1 + t
≤ f(t) ≤ 1 + t

2
.

Then, for A,B ≥ 0 and for a symmetric operator monotone function f ,

f(A−1/2BA−1/2) ≤ I + A−1/2BA−1/2

2
.

Consequently,

A1/2f(A−1/2BA−1/2)A1/2 ≤ A1/2 I + A−1/2BA−1/2

2
A1/2,

or

AσfB ≤
A+B

2
.
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Even if f is not symmetric, we have the following proposition, which was kindly pointed out to

us by Jun Ichi Fujii.

Proposition 3.1.1. Let f be a strictly positive operator monotone function on (0,∞) with

f((0,∞)) ⊂ (0,∞) and f(1) = 1. Then for any positive semi-definite matrices A and B

2AσfB ≤ A+B + |A−B|.

Proof. We use the arguments similar to those in the proof of Theorem 3.1.1.

Let A−B = P −Q, where P = (A−B)+ and Q = (A−B)− are the positive and negative

parts of A−B, respectively.

By the monotonicity of σf , A ≤ A+Q and A− P +Q ≤ A+Q then Aσf (A− P +Q) ≤

(A+Q)σf (A+Q). Therefore,

AσfB = Aσf (A− P +Q)

≤ (A+Q)σf (A− P +Q)

≤ (A+Q)σf (A+Q)

= (A+Q)
1
2f((A+Q)−

1
2 (A+Q)(A+Q)−

1
2 )(A+Q)

1
2

= (A+Q)
1
2f(I)(A+Q)

1
2

= A+Q

=
A+B + P +Q

2

=
A+B

2
+
|A−B|

2
.
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3.2 Reverse inequalities for the matrix Heinz means

The results of this section are taken from [52].

Recall that the reverse arithmetic-geometric mean inequalities (3.0.2) and (3.0.3) have matrix

versions for positive definite matrices with any unitarily invariant norm ||| · ||| as follows [16]:

∣∣∣∣∣∣∣∣∣A1/2B1/2
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣AsB1−s + A1−sBs

2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A+B

2

∣∣∣∣∣∣∣∣∣.
From (3.1.7), the following reverse inequality for the matrix Heinz mean holds: for any

A,B ∈ H+
n such that AB +BA ≥ 0 and s ∈ [0, 1],

A+B

2
− 1

2
|A−B| ≤ A]sB + A]1−sB

2
. (3.2.8)

For positive definite matrices A and B, another matrix version of Heinz mean is defined as
A]sB + A]1−sB

2
. However, without the conditionAB+BA ≥ 0, it was shown in [47, Theorem

2.1] that for any operator mean σ and for any A,B ∈ Pn,

A+B

2
− AσB ≤ 1

2
A1/2

∣∣I − A−1/2BA−1/2∣∣A1/2. (3.2.9)

The aim of the next subsections is to present new general reverse inequalities with (3.2.9)

for unitarily invariant norms. As a consequence, we obtain a new reverse inequality for Heinz

means.

3.2.1 Reverse arithmetic-Heinz-geometric mean inequalities with unitar-

ily invariant norms

The results of this subsection are taken from [52].

Recall that a norm ||| · ||| on Mn is unitarily invariant if |||UAV ||| = |||A||| for any unitary

matricesU, V and anyA ∈Mn. Ky Fan Dominance Theorem [16] asserts that givenA,B ∈Mn,

s(A) ≺w s(B) if and only if |||A||| ≤ |||B||| for all unitarily invariant norms ||| · |||, where s(A)
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denotes the vector of singular values of A.

An immediate consequence [47, Theorem 2.1] is as follows.

Lemma 3.2.1. ([47, Theorem 2.1]) Let σ and τ be arbitrary operator means and ||| · ||| be any

unitarily invariant norm on Mn. Then for any A,B ∈ H+
n ,

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ |||AσB|||
and ∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||AσB + AτB|||.

When σ is the Heinz mean, for any s ∈ [0, 1] we have

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A]sB + A]1−sB

2

∣∣∣∣∣∣∣∣∣. (3.2.10)

If s > 1, (3.2.10) is reversed.

It is also natural to consider the following matrix inequality

A∇B ≤ As/2B1−sAs/2 +
1

2
A1/2|I − A−1/2BA−1/2|A1/2, (3.2.11)

where s ∈ [0, 1]. The following example shows that the last matrix inequality does not hold for

s = 1/2. Indeed, for the following positive definite matrices

A =

 0.699 1.1455

1.1455 4.9308

 , B =

 0.9249 0.7064

0.7064 0.5928

 ,

the matrix

A1/4B1/2A1/4 +
1

2
A1/2|I − A−1/2BA−1/2|A1/2 − A+B

2

has eigenvalues 1.2956 and−0.0234. Therefore, the inequality (3.2.11) is not true. However, the

eigenvalues of A1/4B1/2A1/4 are 0.1531 and 2.1184, and the eigenvalues of
A+B

2
− 1

2
A1/2|I−
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A−1/2BA−1/2|A1/2 are 0.9665 and 0.0327. That means,

A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2 ≺w A1/4B1/2A1/4

or ∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A1/4B1/2A1/4
∣∣∣∣∣∣∣∣∣. (3.2.12)

At the same time, from Lemma 3.2.1 one also can ask whether the following inequality is

true

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣AsB1−s +BsA1−s

2

∣∣∣∣∣∣∣∣∣. (3.2.13)

In the following theorem we prove more general inequalities of (3.2.12) for operator mono-

tone functions. As a consequence, we will give a proof of (3.2.13).

Theorem 3.2.1. Let ||| · ||| be an arbitrary unitarily invariant norm on Mn. Let f be an operator

monotone function on [0,∞) with f((0,∞)) ⊂ (0,∞) and f(0) = 0, and g a function on [0,∞)

such that g(t) = t
f(t)

(t ∈ (0,∞)) and g(0) = 0. Then for any A,B ∈ Pn,

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2
∣∣∣∣∣∣∣∣∣ (3.2.14)

≤
∣∣∣∣∣∣∣∣∣f(A)g(B)

∣∣∣∣∣∣∣∣∣. (3.2.15)

Proof. Let us prove the first inequality. Suppose that A ≤ B. Then,

A+B − A1/2|I − A−1/2BA−1/2|A1/2 = 2A.

Since g is operator monotone, we have f(A)−1/2Af(A)−1/2 = g(A) ≤ g(B). Hence,

f(A)1/2g(A)f(A)1/2 ≤ f(A)1/2g(B)f(A)1/2,

69



or

A ≤ f(A)1/2g(B)f(A)1/2.

Therefore,

|||A||| ≤
∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2

∣∣∣∣∣∣∣∣∣.
Next, we consider the general case. For the operator I − A−1/2BA−1/2, let P = (I −

A−1/2BA−1/2)+ and Q = (I − A−1/2BA−1/2)−.

Then,

I − A−1/2BA−1/2 = P −Q

and

|I − A−1/2BA−1/2| = P +Q.

Consequently,

A−B = A1/2PA1/2 − A1/2QA1/2

and

A1/2|I − A−1/2BA−1/2|A1/2 = A1/2PA1/2 + A1/2QA1/2.

It is obvious that A−A1/2PA1/2 ∈ H+
n . Since A−A1/2PA1/2 = B −A1/2QA1/2 ≤ B, we get

A− A1/2PA1/2 ≤ f(A− A1/2PA1/2)1/2g(B)f(A− A1/2PA1/2)1/2.

Thus,

∣∣∣∣∣∣∣∣∣A− A1/2PA1/2
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣f(A− A1/2PA1/2)1/2g(B)f(A− A1/2PA1/2)1/2

∣∣∣∣∣∣∣∣∣.
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Notice that

∣∣∣∣∣∣∣∣∣f(A− A1/2PA1/2)1/2g(B)f(A− A1/2PA1/2)1/2
∣∣∣∣∣∣∣∣∣

=
∣∣∣∣∣∣∣∣∣f(A− A1/2PA1/2)1/2g(B)1/2g(B)1/2f(A− A1/2PA1/2)1/2

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣g(B)1/2f(A− A1/2PA1/2)g(B)1/2

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣g(B)1/2f(A)g(B)1/2

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2

∣∣∣∣∣∣∣∣∣.
Therefore,

∣∣∣∣∣∣∣∣∣A+B − A1/2|I − A−1/2BA−1/2|A1/2
∣∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣∣A− A1/2PA1/2
∣∣∣∣∣∣∣∣∣

≤ 2
∣∣∣∣∣∣∣∣∣f(A)1/2g(B)f(A)1/2

∣∣∣∣∣∣∣∣∣.
The second inequality immediately follows from the Hiai-Ando log-majorization theorem

which states that
∣∣∣∣∣∣∣∣∣A1/2BA1/2

∣∣∣∣∣∣∣∣∣ ≤ |||AB|||.
Corollary 3.2.1. Let A,B ∈ Pn and s ∈ [0, 1]. Then,

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A1/2B1/2
∣∣∣∣∣∣∣∣∣.

Now let us give another version of reverse inequality for the Heinz mean.

Corollary 3.2.2. Let A,B ∈ H+
n and s ∈ [0, 1]. Then we have

∣∣∣∣∣∣∣∣∣A+B

2
− 1

2
A1/2|I − A−1/2BA−1/2|A1/2

∣∣∣∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣∣∣∣AsB1−s + A1−sBs
∣∣∣∣∣∣∣∣∣. (3.2.16)

Proof. Since A,B are positive definite matrices, the function f(s) = |||AsB1−s + A1−sBs|||

is continuous convex on [0, 1], and twice differentiable on (0, 1) and f ′(1/2) = 0 (see [16, p.
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265]). Hence, f(s) attains a minimum on [0, 1] at s = 1/2. That means,

|||AsB1−s + A1−sBs||| ≥ 2|||A1/2B1/2|||, s ∈ [0, 1].

On account of Corollary 3.2.1, we get the desired inequality (3.2.16).

Corollary 3.2.3. For any A,B ∈ H+
n such that AB + BA ≥ 0 and s ∈ [0, 1], we get the

following inequalities

|||A+B − |A−B|||| ≤ 2|||A1/2B1/2||| (3.2.17)

and

|||A+B − |A−B|||| ≤ 2|||AsB1−s + A1−sBs|||. (3.2.18)

Proof. Inequality (3.2.17) follows from Theorem 3.1.1. We can prove (3.2.18) by using similar

arguments as in the proof of Corollary 3.2.2.

Remark 3.2.1. For any A,B ∈ Pn and s ∈ [0, 1] by the Araki-Lieb-Thirring inequality

Tr(A1/2|I − A−1/2BA−1/2|A1/2) ≥ Tr(|A−B|).

It follows from the Powers-Størmer inequality that

Tr

(
A+B

2

)
− 1

2
Tr(A1/2|I − A−1/2BA−1/2|A1/2) ≤ Tr(As/2B1−sAs/2) = Tr(AsB1−s).

3.2.2 Reverse inequalities for the matrix Heinz mean with Hilbert-Schmidt

norm

The results of this subsection are taken from [52]

It is obvious that for any positive numbers a and b,

(a+ b)2 − |a2 − b2| ≤ (asb1−s + a1−sbs)2. (3.2.19)
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In this section, based on (3.2.19) and (3.0.2) we obtain some reverse inequalities for matrix

Heinz mean with Hilbert-Schmidt norms.

Theorem 3.2.2. For any A,B ∈ H+
n and X ∈Mn, then

||AX +XB||22 − ||AX −XB||22 ≤ ||AsXB1−s + A1−sXBs||22. (3.2.20)

Proof. Since positive semi-definite matrices are unitarily diagonalizable, hence there are unitary

matrices U, V such that A = UDU∗ and B = V EV ∗, where

D = diag(λ1, · · · , λn), E = diag(γ1, · · · , γn).

If we put Z = U∗XV = [zij], then

AX +XB = U((λi + γj)zij)V
∗,

AX −XB = U((λi − γj)zij)V ∗,

AsXB1−s + A1−sXBs = U((λsiγ
1−s
i + λ1−si γsi )zij)V

∗.

It is obvious that

(a+ b)2 ≤ (a− b)2 + (asb1−s + a1−sbs)2.

Therefore,

||AX +XB||22 =
n∑

i,j=1

(λi + γj)
2|zij|2

≤
n∑

i,j=1

[
(λi − γj)2

]
+ (λsiγ

1−s
j + λ1−si γsj )

2)|zij|2

= ||AX −XB||22 + ||AsXB1−s + A1−sXBs||22.
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3.3 The in-sphere property for operator means

The results of this section are taken from [52].

Let 0 ≤ a ≤ b. Then for any x in [a, b], we have

x− a ≤ b− a.

We call this in-betweenness property . Notice that any mean of numbers has in-betweenness

property. At the same time, we also have

a+ b

2
− x ≤ b− a

2
. (3.3.21)

In other words, any x between a and b lies inside the circle with the center at the arithmetic

mean
a+ b

2
and the radius equals to half of the distance between a and b. It is worth to mention

that the Powers-Størmer inequality is one of matrix generalizations of (3.3.21).

In [9], Audenaert introduced a geometric alternative to monotonicity of weighted means the

”in-betweenness” property. A matrix mean M(A,B, t) (t ∈ [0, 1]) such that M(A,B, 1) = A

and M(A,B, 0) = B is said to satisfy the “in-betweenness” property with respect to a metric δ

on H+
n if the assignment t 7→ δ(A,M(A,B, t)) defines a monotonically decreasing real function.

He proved the monotone property for some families of non-Kubo-Ando means. Of particular

importance for [9] are the weighted brethren of Bhagwat and Subramanian’s power or binomial

means [15],

Mp(A,B, t) = (tAp + (1− t)Bp)1/p , p ∈ R.

It is worth noting that in the particular cases of p = ±1, Mp(A,B, t) is a mean in the sense

of Kubo-Ando. In spite of this, the power means with p > 1 have many important applications,

e.g., in mathematical physics and in the theory of operator spaces, where they form the basis of

certain generalizations of lp norms to non-commutative vector-valued Lp spaces [21]. Audenaert

also conjectured that the “in-betweenness” property may hold for p > 2.

In [49] Trung Hoa Dinh, Raluca Dumitru and Jose Franco provided an alternate proof of the

74



fact that the weighted power means Mp(A,B, t) = (tAp + (1 − t)Bp)1/p(1 ≤ p ≤ 2) satisfy

Audenaert’s ”in-betweenness” property for positive semi-definite matrices. They also show that

the ”in-betweenness” property holds with respect to any unitarily invariant norm for p = 1/2

and with respect to the Euclidean metric for p = 1/4. For Kubo-Ando means they show that the

only Kubo-Ando symmetric mean satisfying the ”in-betweenness” property with respect to any

metric induced by a unitarily invariant norm is the arithmetic mean.

In this section we will study in-sphere property for operator means. Firstly, recall that from

(3.2.9), for any operator mean σ and for any A,B ∈ H+
n with AB +BA ≥ 0,

∣∣∣∣∣∣∣∣∣A+B

2
− AσB

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A−B|||. (3.3.22)

The last inequality means that whatever operator mean σ we take, the point AσB can not run

out of the sphere with center at
A+B

2
and the radius equals to

1

2
|||A − B|||. This is one of

matrix versions of in-sphere property of matrix means. However, if we fix some operator mean

σ which is different from the arithmetic mean, then we can find a couple of matrices A,B so

that AσB runs away from the circle mentioned above.

In the next theorem, we provide a new characterization of the matrix arithmetic mean by the

inequality (3.1.6).

Theorem 3.3.1. Let σ be an arbitrary symmetric mean. If for any arbitrary unitarily invariant

norm ||| · ||| on Mn, ∣∣∣∣∣∣∣∣∣A+B

2
− AσB

∣∣∣∣∣∣∣∣∣ ≤ 1

2
|||A−B||| (3.3.23)

whenever A,B ∈ Pn, then σ is the arithmetic mean.

Proof. By [61, Theorem 4.4], the symmetric operator mean σ has the representation:

AσB =
α

2
(A+B) +

∫
(0,∞)

λ+ 1

λ
{(λA) : B + A : (λB)}dµ(λ), A,B ∈ Pn. (3.3.24)

where λ ≥ 0 and µ is a positive measure on (0,∞) with α+µ((0,∞)) = 1. For two orthogonal

projections P,Q acting on a Hilbert space H, P ∧ Q denotes the orthogonal projection on the
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subspace P (H) ∩Q(H). By [61, Theorem 3.7], we have

(λP ) : Q = P : (λQ) =
λ

λ+ 1
P ∧Q.

Consequently, if P ∧Q, then from (3.3.24) we get

PσQ =
α

2
(P +Q). (3.3.25)

For θ > 0 let us consider the following orthogonal projections

P =

 1 0

0 0

 , Q =

 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

 .

It is easy to see that P ∧ Q = 0. And then, for these projections on account of (3.3.25), the

inequality (3.3.23) becomes

(1− α)|||P +Q||| ≤ |||P −Q|||,

or

(1− α)|||P +Q||| ≤ sin θ|||H|||, (3.3.26)

where H =

 sin θ − cos θ

− cos θ − sin θ

. Since it is true for all θ > 0, letting α tend to 0+ from

(3.3.26) we obtain 1 − α ≤ 0. Thus, α ≥ 1. This shows that µ = 0 and σ is the arithmetic

mean.

In the rest of the thesis we are going to show that if we replace the Kubo-Ando means by the

power mean Mp(A,B, t) = (tAp + (1− t)Bp)1/p with p ∈ [1, 2] then the inequality in Theorem

3.3.1 holds without the condition AB + BA ≥ 0. In other words, the matrix power means

Mp(A,B, t) satisfies in-sphere property with respect to the Hilbert-Schmidt 2-norm.
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Theorem 3.3.2. Let p ∈ [1, 2], t ∈ [0, 1] and Mp(A,B, t) = (tAp + (1− t)Bp)1/p. Then for any

pair of positive semi-definite matrices A and B,

∣∣∣∣∣∣A+B

2
−Mp(A,B, t)

∣∣∣∣∣∣
2
≤ 1

2

∣∣∣∣∣∣A−B∣∣∣∣∣∣
2
. (3.3.27)

Proof. The following proof is based on the fact that for p ∈ [1, 2] the function x1/p is operator

concave and the function x2/p is operator convex.

Since ||A||2 = (Tr(A2))1/2, the inequality (3.3.27) is equivalent to the following

[
Tr

(
[
A+B

2
−Mp(A,B, t)]

2

)]1/2
≤ 1

2

[
Tr([A−B]2)

]1/2
Tr

(
[
A+B

2
−Mp(A,B, t)]

2

)
≤ 1

4
Tr([A−B]2)

Tr

(
(A+B)2

4

)
− Tr [(A+B)Mp(A,B, t)] + Tr

(
M2

p (A,B, t)
)
≤ 1

4

[
Tr([A+B]2)− 4 Tr(AB)

]
Tr(M2

p (A,B, t))− Tr((A+B)Mp(A,B, t)) ≤ −Tr(AB).

(3.3.28)

It is obvious that inequality (3.3.28) holds for t = 0 or t = 1. We have to show that the set

of t satisfying (3.3.28) is convex subset in [0, 1], and then it coincides with [0, 1]. Let s, t belong

to [0, 1] satisfying (3.3.28). We now show that (3.3.28) is true for (t+ s)/2.

Note that

Mp

(
A,B,

t+ s

2

)
=

(
t+ s

2
Ap + (1− t+ s

2
)Bp

)1/p

=

(
1

2
[tAp + (1− t)Bp] +

1

2
[sAp + (1− s)Bp]

)1/p

=

(
1

2
Mp

p (A,B, t) +
1

2
Mp

p (A,B, s)

)1/p

.
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Since p ∈ (1, 2) the function x1/p is operator concave, then we have

Mp

(
A,B,

t+ s

2

)
=

(
1

2
Mp

p (A,B, t) +
1

2
Mp

p (A,B, s)

)1/p

≥ 1

2
Mp(A,B, t) +

1

2
Mp(A,B, s).

Consequently, for the positive matrix A+B,

Tr

(
(A+B)Mp

(
A,B,

t+ s

2

))
≥ 1

2
Tr ((A+B)Mp(A,B, t) + (A+B)Mp(A,B, s)) .

(3.3.29)

In the other hand, for p ∈ [1, 2] the function x2/p is operator convex, then we have

M2
p

(
A,B,

t+ s

2

)
=

[
1

2
Mp

p (A,B, t) +
1

2
Mp

p (A,B, s)

]2/p
≤ 1

2
M2

p (A,B, t) +
1

2
M2

p (A,B, s). (3.3.30)

From (3.3.29) and (3.3.30) we obtain

Tr

(
M2

p

(
A,B,

t+ s

2

))
− Tr

(
(A+B)Mp

(
A,B,

t+ s

2

))
≤ 1

2
Tr
(
M2

p (A,B, t)
)

+
1

2
Tr(M2

p (A,B, s))− 1

2
Tr ((A+B)Mp(A,B, t))

− 1

2
Tr ((A+B)Mp(A,B, s))

≤ −Tr(AB).

Therefore, inequality (3.3.27) holds for (s+ t)/2.
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Conclusion

The thesis obtains the following results.

1. Define new class of operator (p, h)-convex functions and obtain properties for them. This

is a new class of operator function, generalizing many classes of known operator functions.

2. Provide a type of Jensen inequality for operator (p, h)-convex function, generalizing for

many types of Jensen inequality for known classes of operator convex functions

3. Provide a Hansen-Pedersen type inequality for operator(p, h)-convex functions, prove an

inequality for index set functions for this class of function.

4. Define a class of operator (r, s)-convex function and study some properties for them.

This is also a new class of operator convex functions, generalizing the class of operator

r-convex functions.

5. Prove the Jensen and Rado type inequalities for operator (r, s)-convex functions.

6. Provide some equivalent conditions for a function to be operator (p, h)-convex and (r, s)-

convex, respectively.

7. Prove a generalized reverse arithmetic-geometric mean inequality involving Kubo-Ando

means.

8. Prove some reverse norm inequalities for the matrix Heinz mean.
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9. Obtain a new characterization of the arithmetic mean by a matrix inequality with respect

to the unitarily norm.

10. Obtain the ”in-sphere property” for matrix means with respect to unitary invariant norm

and Hilbert Schmidt norm. At the same time, we also show that the matrix power mean

satisfies the in-sphere property with respect to the Hilbert-Schmidt norm.
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Future investigation.

In the near future, we intend to continue investigation in the following direction:

1. Continue to characterize new classes of operator convexity with some well-known matrix

means.

2. Let p, q be positive numbers, h be super-multiplicative non-negative real valued function.

A function f is called operator (p, h, q)-convex if

f
(

[αAp + (1− α)Bp]1/p
)
≤ [h(α)f(A)q + h(1− α)f(B)q]1/q

If q = 1 then we get the class of operator (p, h, 1)-convex or called operator (p, h)-convex,

and if h ≡ id is identity function, we get the class of operator (p, id, q)-convex functions,

or called as operator (r, s)-convex functions. In the future, we intend to continue to inves-

tigate this general class of operator functions for some different cases.

3. In-sphere property of the matrix mean: We believe that the matrix power mean satisfies

in-sphere property with respect to the p-Schatten norm a larger range of p and for any

unitarily invariant norm.

4. Define new classes of quantum entropy in relation with new types of operator convex

functions. It would be meaningful to study their properties and applications in quantum

information theory.
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